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Analysis of multi-condition single-cell 
data with latent embedding multivariate 
regression
 

Constantin Ahlmann-Eltze    1,2   & Wolfgang Huber    1 

Identifying gene expression differences in heterogeneous tissues across 
conditions is a fundamental biological task, enabled by multi-condition 
single-cell RNA sequencing (RNA-seq). Current data analysis approaches 
divide the constituent cells into clusters meant to represent cell types, but 
such discrete categorization tends to be an unsatisfactory model of the 
underlying biology. Here, we introduce latent embedding multivariate 
regression (LEMUR), a model that operates without, or before, commitment 
to discrete categorization. LEMUR (1) integrates data from different 
conditions, (2) predicts each cell’s gene expression changes as a function 
of the conditions and its position in latent space and (3) for each gene, 
identifies a compact neighborhood of cells with consistent differential 
expression. We apply LEMUR to cancer, zebrafish development and spatial 
gradients in Alzheimer’s disease, demonstrating its broad applicability.

Premature discretization of continuous variables leads to artifacts in 
data analysis and a loss of power; yet, it is the dominant approach to deal 
with the diversity of cell types and states in multi-condition single-cell 
data. Lähnemann et al.1 described overcoming the reliance on cluster-
ing or (discrete) cell type assignment before downstream analysis as 
one of the grand challenges in single-cell data analysis.

Single-cell RNA-seq can be used to study the effect of experimen-
tal interventions or observational conditions on a heterogeneous set 
of cells, for example, from tissue biopsies or organoids. Typically, 
cells from the same sample share the same condition but come from 
multiple cell types and states (for example, position in a differentia-
tion or cellular aging path, cell cycle, metabolism). The advantage 
multi-condition single-cell RNA-seq offers over bulk sequencing is 
the ability to disentangle expression changes between correspond-
ing cells under different conditions from those between cell types 
or states.

Here, we present a generative model and inference procedure 
to address three tasks in multi-condition single-cell data analysis: (1) 
integrate the data into a common latent space, (2) for each cell, predict 
the expression it would have in any of the conditions and (3) find inter-
esting and statistically significant patterns of differential expression.

For the first task, many methods exist that all share the more or less 
explicit aim that the variation remaining in the common latent space 
represents a cell type or a cell state and no longer the external conditions.

However, only some integration methods address the counter-
factual prediction of the second task. Harmony2, Seurat3 and MNN4 
have no canonical way to map back from positions in the integrated 
embedding to the gene expression space. By contrast, scVI5, scGen6, 
CPA7 and CellOT8 use autoencoders in which the encoder maps from 
gene expression space to latent space and the decoder maps back 
in the reverse direction. Latent embedding multivariate regression 
(LEMUR), instead of learning an encoder and a decoder separately, fits 
analytically invertible functions to generate condition-specific gene 
expression values from the integrated embedding.

For the third task, differential expression analysis across condi-
tions, the state of the art is to take an integrated embedding, assign the 
cells to clusters and find differentially expressed genes separately for 
each given cluster using methods known from bulk RNA-seq analysis 
(‘pseudobulking’)9,10. Here, we turn this process around. We employ the 
LEMUR counterfactual predictions to compute differential expression 
statistics for each cell and each gene and then select connected sets of 
cells with consistent differential expression.
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(independent experimental unit, for example, tissue biopsy or orga-
noid) it originates from and a design matrix12.

The design matrix encodes one or more covariates that represent 
experimental treatments or observational conditions. It is analogous 
to the design matrix in differential expression tools like limma13 and 
DESeq2 (ref. 14) and can account for fully general experimental or study 
designs. The design matrix can include sources of unwanted variation 
(for example, experimental batch) and sources of variation whose influ-
ence we are interested in (for example, treatment status). We term a 
unique combination of covariate values a condition. In the simple case of 
a two-condition comparison, the design matrix is a two-column matrix, 
the elements of which are all 1 in the first column (intercept) and 0 or 1 in 
the second column, indicating for each cell which condition it is from.

Matrix factorization with known covariate information
Consider each cell as a point in a high-dimensional space defined by its 
measured gene expression profile. The manifold hypothesis posits that 

To this end, the LEMUR model decomposes the variation in the 
data into four sources:

	1.	 The conditions, which are explicitly known,
	2.	 Cell types or states that are not explicitly known but assumed to 

be representable by a low-dimensional manifold,
	3.	 Interactions between the two and
	4.	 Unexplained residual variability.

LEMUR is implemented in an R package on Bioconductor called 
lemur and a Python package called pyLemur.

Results
Fig. 1a outlines the LEMUR workflow. The method takes as input a data 
matrix of size genes × cells. It assumes that appropriate preprocessing, 
including size factor normalization and variance stabilizing transforma-
tion, was performed11. In addition, it expects two tables of metadata for 
the cells: a categorical variable that, for each cell, specifies the sample 
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Fig. 1 | Conceptual overview of LEMUR. a, Four-step workflow. b, The matrix 
factorization at the core of LEMUR. c, Details on each step from a: step 1,  
a linear subspace is fitted separately for each condition. The subspaces for 
the different conditions are related to each other via affine transformations 
that are parameterized by the covariates. For this visualization, different 
two-dimensional subspaces of a three-dimensional gene space are drawn; 
actual dimensions are higher. Step 2, the differential expression statistic Δ is 

computed as the difference between the predicted values in the control and 
treated conditions. The visualization shows a top view of the visualization from 
step 1. Step 3, for each gene, cells close to each other with consistent Δ values are 
grouped into neighborhoods. Step 4, a pseudobulk differential expression test 
is applied to the cells within each neighborhood. Ctrl., control; DE, differentially 
expressed; dim, dimension; trt, treatment.
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the data concentrate along an (unknown) low-dimensional manifold 
inside that high-dimensional space. Empirically, it has been found that 
useful approximations of that low-dimensional manifold can be made 
by the linear vector space spanned by the first few dozen components 
of a principal-component analysis (PCA).

The central idea of LEMUR is to represent multi-condition 
single-cell RNA-seq data using a multi-condition extension of PCA 
(Fig. 1b). Given a data matrix Y, PCA can be used to approximate Y ≈ RZ 
with two smaller matrices: the first, R, contains the top principal com-
ponents, which act as a basis for the low-dimensional linear subspace; 
the second, Z, contains the coordinates of each cell with respect to that 
basis. In this elementary form, there is no place to explicitly encode 
known experimental or study covariates. LEMUR adds this capability 
by including a regression analysis component.

Instead of using a single subspace, we find a separate subspace 
for each condition. For this, we let the subspace-spanning matrix R(X) 
depend on the covariates provided in the design matrix X (Fig. 1c, step 
1). With this ansatz, we address the decomposition task posed above: 
known sources of variation are encoded in X; cell type and state vari-
ations are represented by the cell coordinates Z. While X is explicitly 
known, Z is latent; that is, it is estimated from the data. The construction 
allows modeling interactions, that is, gene expression changes across 
conditions that are different for different cell types and states. This is 
the main feature of LEMUR.

A second feature of this construction is between-condition inte-
gration: data from cells observed in different conditions are mapped 
into a common latent space. By default, the integration is based on 
the alignment of the respective subspaces, but it can optionally be 
improved by information that indicates that certain cells observed in 
different conditions correspond to each other and thus should be close 
to each other in the latent space Z. Such information can come in the 
form of explicit landmarks, that is, from cells that express distinctive 
marker genes, or via statistical properties of the cells exploited by 
methods such as Harmony2. We account for such correspondence by 
adding an affine transformation S(X) to the model.

A third feature of our model is its ability to predict, for each cell, 
how its gene expression profile would look like in any of the conditions, 
even though it was only observed in one of them. In fact, predictions are 
available not only for those positions in latent space where cells were 
observed but for all positions, that is, also for hypothetically interpolat-
ing or extrapolating cell types and states. We use these predictions to 
find changes in gene expression that are coordinated across regions 
of latent space, that is, across the same or similar cell types and states.

Fig. 2 shows a stylized illustration of the LEMUR approach. LEMUR 
fits one one-dimensional subspace (line) per condition, each param-
eterized by a rotation applied to a common base space. The parametric 
model yields a predicted expression value for each cell in each condi-
tion, and we look for regions in latent space (here, we have two major 
regions, left and right) in which predictions are consistently positive 
or negative. In the Methods, we provide a more formal mathematical 
specification.

Cluster-free differential expression analysis
We can predict the expression of a cell in any condition using this para-
metric model. The differential expression between two conditions 
(Fig. 1c, step 2) is just the difference between their predictions and can 
be computed for each cell, even though, for any cell, data were only 
observed in exactly one replicate of one condition (Fig. 2b).

The resulting matrix of differential expression estimates, Δ, has 
two uses: first, we can visualize the differential expression values for 
each gene as a function of latent space. Typical choices for the dimen-
sion of the latent space are ten to 100, and solely for visualization, we 
use a further nonlinear dimension reduction into two-dimensional 
scatterplots, such as uniform manifold approximation and projec-
tion (UMAP)15. Examples are shown in Figs. 4 and 6. Second, we use Δ 

to guide the identification of differential expression neighborhoods, 
that is, groups of cells that consistently show differential expression 
for a particular gene (Fig. 1c, step 3). The intention for these neighbor-
hoods is to be connected, convex and maximal, that is, the differential 
expression pattern would become disproportionately less consistent 
and less significant if the neighborhood were extended.

To rank and assess our level of confidence in the found neighbor-
hoods, we do not attempt to measure the statistical uncertainty of the 
predictions Δ. Instead, we use pseudobulk aggregation9 of the original 
data: raw counts, if available, otherwise, the log-normalized values. 
For each sample, we sum up the original counts or take the mean of 
the log-normalized values of the cells in the neighborhood to obtain a 
neighborhood-specific gene × sample table (Fig. 1c, step 4), followed 
by a differential expression test with glmGamPoi16, edgeR17 or limma13.

Outputs
LEMUR produces the following outputs:

•	 A common low-dimensional latent space representation of all 
cells (Z),

•	 Parametric transformations R and S that map the condition-specific 
latent spaces into each other,

•	 The predicted expression Ŷ  for each gene and cell in any 
condition,

•	 The predicted differential expression Δ for each gene and cell 
for any contrast that can be constructed from the design matrix,

•	 For each gene and contrast, a neighborhood of cells and a statisti-
cal measure of significance (P value).

The last of these will usually be the one end users care about most; 
the others are useful for diagnostics, quality assessment, visualization 
and further modeling uses of the data.

The explicit parameterization of the transformations R and S 
means that they can easily be interpolated or extrapolated beyond 
the observed set of data and inverted from the low-dimensional 
embedding back to the data space. In this sense, LEMUR is a genera-
tive model.
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Fig. 2 | Stylized example with two genes observed in two groups of cells 
in two conditions. a, Scatterplot of the gene space with condition-specific 
one-dimensional subspaces. See the Methods for the mathematical details. 
b, Predicted differential expression of the two genes in each cell. Gene 1 is less 
expressed in treatment compared to control only in the ‘left’ cell type; gene 2 is 
upregulated in the treatment only in the ‘right’ cell type.
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Fig. 3 | Performance assessment. a, UMAPs of the latent spaces for the data from 
Kang et al.18. The k-NN mixing coefficient and the ARI are defined in the main text. 
b, Density plots of the bootstrapped mean performance for ARI and k-NN mixing 
across 13 datasets. To adjust for dataset-dependent variation, we divided the 
k-NN and ARI scores by the average per dataset. c, Scatterplots of predicted 
(pred.) expression under treatment (y axis) against observed expression (x axis) 
for 500 genes in each of eight cell types (same data as in a). d, Prediction error as 
in c, across the same 13 datasets as in b (gray points). Red points show the mean. 
e, Simulation setup. Left, for one of the implanted genes, a UMAP is shown of the 

LEMUR latent space, where the color indicates whether an expression change in 
this gene was simulated for that cell. Center and right, simulated expression 
values. f, Left, predicted log fold change for the gene from e (Δ = ŶB − ŶA). 
Center and right, the set of cells inside or outside the inferred neighborhood.  
g, Comparison of observed false discovery proportion and true positive rate 
(TPR) for 11 datasets, with ten replicates and the overall mean shown as a large 
point. The nominal FDR was fixed to 10%. FP, false positive; IFN, interferon; m, 
months; NK, natural killer; TP, true positive.
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Performance assessment
We assessed performance of LEMUR using 13 publicly available 
multi-condition single-cell datasets (listed in Data availability). We 
preprocessed each dataset consistently following the method of 
Ahlmann-Eltze and Huber11.

First, we considered integration performance: how well does the 
joint low-dimensional representation of the cells preserve biological 
signal encoded in the latent space but remove traces of the known covari-
ates such as batch and treatment effects? Figure 3a illustrates this on 

the dataset from Kang et al.18 of Lupus patient samples treated with 
either interferon β or vehicle control. We measured covariate removal 
by counting for each cell how many of its k = 20 neighbors come from 
the same condition (k-nearest neighbor (k-NN) mixing). For a balanced 
dataset with two conditions, an ideal method scores a k-NN mixing value 
of k/2 = 10. We measured the biological signal retention by comparing, 
for each condition separately, a clustering of the embedding with a clus-
tering of the original data, as measured by the mean of the two adjusted 
Rand indexes (ARI). An ideal method scores close to ARI = 1.
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Across the 13 datasets, the performance of LEMUR on these meas-
ures was similar to that of Harmony (Fig. 3b). Other methods make 
different tradeoffs between the two measures, and no method clearly 
dominates. Extended Data Fig. 1 shows that the results are consistent 
across seven additional metrics.

The computational cost of running LEMUR is at the low end of 
what may be expected for such data and comparable to that of other 
approximative PCA methods. For instance, computing the first 50 
latent dimensions on the Goldfarbmuren data, with 24,178 cells and 
20,953 genes (which occupies 4 GB of RAM), took us 35 s and 24 GB of 
RAM with the approximative irlba algorithm19. For comparison, fitting 
LEMUR without integration took 103 s and needed 33 GB of RAM. Align-
ing the cells with landmarks or Harmony added 2 and 95 s, respectively 
(Extended Data Fig. 2).

Next, we assessed the ability of LEMUR to predict gene expres-
sion across conditions. We used it to predict gene expression under 
treatment for cells that were observed in the control condition and 
compared these predictions to data from cells that, in fact, were 
treated. To avoid overfitting, we assessed predictions on ‘held-out’ 
cells, the data of which were not used for training. As there is  
no direct correspondence between individual cells observed under 
the two conditions, we considered averages across annotated 
cell types. Fig. 3c shows scatterplots of the predicted–observed  

comparison for the Kang et al.18 dataset for the 500 most vari-
able genes in eight cell types for four methods: CPA, scVI, LEMUR 
and the trivial prediction of no change (identity). Across the 13  
datasets, LEMUR showed the smallest prediction error measured 
by the L2 distance between observed and predicted values (Fig. 3d). 
Extended Data Fig. 3 shows that the results are consistent across six 
additional metrics.

In a third set of comparisons, we tested the ability of LEMUR to 
identify sets of cells with consistent differential expression. We took all 
cells from the control condition of the Kang et al.18 data, assigned them 
randomly to a condition A or B and implanted genes with differential 
expression in a subset of cells. Fig. 3e shows an example. LEMUR accu-
rately identified the expression change and inferred a neighborhood 
of cells that overlapped well with the simulated ground truth (Fig. 3f).

We expanded this analysis to ten more semi-synthetic datasets, 
each with 200 implanted differentially expressed genes, to assess the 
type I error control of the LEMUR differential expression test. LEMUR 
on average controlled the false discovery rate (FDR) (Fig. 3g, top). 
In addition, it was more powerful than a pseudobulked test across 
all cells (global) or separate tests for subsets of cells, either by cell 
type or cluster as in Crowell et al.9 or by neighborhood as in miloDE10 
(Fig. 3g, bottom). Extended Data Fig. 4 assesses FDR control and 
power for additional variants of the LEMUR method. It shows that 
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Black, cells from the respective time window after fertilization; gray, all other 
cells, for comparison. Because some cell types only exist at particular stages 
of development, temporal changes in the distribution of black points are to be 

expected. b, Synthetic cells projected onto the UMAP. They interpolate between 
pairs of observed cells, one pair in the periderm (purple and turquoise) and one 
in the central nervous system (red and green). c, Expression predictions (smooth 
lines) and averaged observed data (points) for four genes as a function of time  
(x axis) and latent space coordinates (color).
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accounting for post-selection bias from the neighborhood inference 
is important and that it is successfully addressed by data splitting.

Overall, these benchmarks demonstrate that LEMUR (1) success-
fully integrates single-cell data from different conditions, (2) detects 
cell type- and state-specific differential expression patterns without 
access to prior clusterings or categorizations of cells and (3) pro-
vides accurate statistical type I error control and good power. In the  
following, we apply LEMUR to the analysis of different biological 
datasets.

Treatment–control data: panobinostat in glioblastoma
Zhao et al.20 reported single-cell RNA-seq data of glioblastoma biopsies. 
Aliquots from five patients were assayed in two conditions: control and 
panobinostat, a histone deacetylase (HDAC) inhibitor (Fig. 4a). After 
quality control, the data contained 65,955 cells (Extended Data Table 1).

The left column of Fig. 4b shows a two-dimensional UMAP of the 
input data Y. Most visible variation is associated with the known covari-
ates: donor and treatment condition. Some further variation is related 
to the different cell types in the biopsies. We used LEMUR to absorb 
donor and treatment effects into R, setting the latent space dimension 
to P = 60. The middle column of Fig. 4b shows, upon fixing S(x) to the 
identity matrix, a UMAP of the resulting matrix Z of latent coordinates 
for each cell. Cells from different samples are more intermixed, and 
within-sample cellular heterogeneity is more evident. This picture 
becomes even clearer after using S to match cell subpopulations across 
samples using Harmony’s maximum diversity clustering (Fig. 4b, right 
column). Here, a large population of tumor cells and three non-tumor 
subpopulations become apparent.

The successive improvement of the latent space representation 
from left to right is further demonstrated in the bottom row of Fig. 4b, 
where the points are colored according to a cell type assignment that 
we obtained from the expression of selected marker genes and known 
chromosomal aneuploidies (Extended Data Fig. 5a,b).

The linear latent space of LEMUR is readily interpretable. This is 
exemplified in Extended Data Fig. 5c, which extends the biplot concept 
from PCA21 to the multi-condition setting. We can explore how higher 
or lower expression of any gene affects a cell’s position in the latent 
space Z by plotting the gene’s loading vector relative to the coordinate 
system of Z.

Using LEMUR’s differential expression testing, we found that pan-
obinostat caused cell subset-specific expression changes in 25% of all 
genes (2,498 of 10,000) at an FDR of 10%. Extended Data Fig. 6 shows the 
differential expression and inferred neighborhoods for seven genes.

Focusing on tumor cells, we identified subpopulations that differ-
entially responded to panobinostat treatment (Fig. 4c). In a subpopula-
tion of 9,430 tumor cells, which stemmed in substantial proportions 
from all five patients, treatment with panobinostat caused down-
regulation of LMO2, while, in the majority of tumor cells (n = 36,535), 
expression of LMO2 was unchanged (Fig. 4c, right). The product of 
LMO2 forms protein complexes with the transcription factors TAL1, 
TCF3 and GATA; it is important for angiogenesis and was originally 
discovered as an oncogene in T cell acute lymphoblastic leukemia22. 
Kim et al.23 studied the role of LMO2 in glioblastoma and found that 
higher expression is associated with worse patient survival. They con-
cluded that LMO2 could be a clinically relevant drug target. To further 
characterize the subset of tumor cells that respond to panobinostat 

a Amyloid-β density
0 0.5 1.0

Spatial coord.

Spatial coord.

Mouse 4

Mouse 1

UMAP

b Neuron Other cell type

Spatial coord.

Spatial coord.

Mouse 4

Mouse 1

UMAP

c Jun di�erential expression
–0.2 0 0.2

Spatial coord.

Spatial coord.

Mouse 4

Mouse 1

UMAP

d

Spatial coord.

Spatial coord.

Mouse 4

Mouse 1

Inside Jun neighborhood Outside

UMAP

e

0

0.1

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Amyloid-β plaque density (binned)

Ex
pr

es
si

on

Cells in neighborhood
Other neurons
All other cells

Jun expr. vs. amyloid-β plaque density

Fig. 6 | Analysis of a spatial single-cell experiment. a–d, UMAPs of cells from the 
hippocampi of four mice and spatial maps for two of them, colored by amyloid-β 
plaque density (calculated from smoothed and normalized fluorescent images26) 
(a), whether the cell is a neuron (b), LEMUR-predicted differential expression 
(log2 fold change) for Jun (c) and whether the cell is inside the differential 

expression neighborhood for Jun (d). e, Scatterplot of Jun expression as a 
function of plaque density for cells inside the neighborhood, neurons not in the 
neighborhood and all other cells. The line is a local regression (LOESS) fit through 
the pseudobulked values. Coord., coordinate.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01996-0

by downregulating LMO2, we compared their overall gene expression 
profiles in the control condition to that of the other tumor cells. We 
found lower expression of ribosomal genes, consistent with lower 
translational activity (Fig. 4d).

Time course data: zebrafish embryo development
Saunders et al.24 reported an atlas of zebrafish embryo development, 
which includes data from 967 embryos and 838,036 cells collected 
at 16 time points in 2-h intervals from 18 h to 48 h after fertilization 
(Fig. 5a). They used their single-cell RNA-seq data to assign each cell 
to a common cell type classification scheme and studied the temporal 
dynamics of appearance and disappearance of cell types along devel-
opmental time. We asked whether gene expression changes could 
reveal additional biological phenomena. Thus, we looked for temporal 
profiles of gene expression that systematically differed across cells 
that shared the same cell type annotation. For this, we used the abil-
ity of LEMUR to predict any gene’s expression at any point in latent 
space at any time. To represent the time dependence of each gene with 
a smaller number of parameters, we used natural cubic splines with 
three degrees of freedom, following the method of Smyth et al.25. To 
model latent space variation, we interpolated linearly in latent space 
Z between two cells (red and green) from the central nervous system 
and, analogously, between two cells (purple and turquoise) from the 
periderm, a transient, outermost epithelial layer that covers the devel-
oping embryo during the early stages of development (Fig. 5b and 
Extended Data Fig. 7a).

We used the LEMUR fits to screen for genes for which the spline 
coefficients were different across this interpolated latent space gradi-
ent, according to a statistical test for interaction (FDR = 0.001). Fig. 5c 
shows the data for four examples in which the temporal divergence of 
gene expression was corroborated by pseudobulking the observed 
expression data of the nearest neighbors in each 6-h interval. For 
instance, krt8, which encodes a keratin essential for the structural 
integrity, protective barrier function and proper development of the 
periderm, showed decreasing expression over time for cells close to 
the turquoise cell and increasing expression for cells close to the purple 
cell. Several possible explanations for the intricate and divergent tem-
poral regulation of krt8 within periderm cells (Extended Data Fig. 7b,c) 
exist, including spatial structures.

Spatial data: plaque density in Alzheimer’s disease
Cable et al.26 performed Slide-seqV2 on the hippocampus of four 
mice genetically engineered to model amyloidosis in Alzheimer’s 
disease. Using microscopy, they quantified the spatial density of 
amyloid-β plaques (Fig. 6a). Thus, plaque density is an observational 
covariate that varies from cell to cell; this is in contrast to the covari-
ates considered above, which vary from sample to sample. Cable 
et al.26 reported a differential expression analysis per discrete cell 
type category; however, the categories were fairly broad and could not  
account for the gradual changes suggested by the data (Fig. 6b 
and Extended Data Fig. 7a). LEMUR enabled us to defer cell type  
categorization and directly identify genes with expression varying 
between low and high plaque density in adaptively found subsets 
of cells. Fig. 6c shows the differential expression prediction for Jun, 
encoding a transcription factor that was identified as a member of 
the pathway regulating β-amyloid-induced apoptosis27,28 and one of 
the top hits after the LEMUR analysis. The correlation between higher 
amyloid-β plaque density and increased Jun expression was limited to 
a subset of about 20% of the neurons, which clustered both in spatial 
coordinates and in the latent space (Fig. 6d). The correlation did not 
hold for other neurons (Fig. 6e and Extended Data Fig. 8b). We pro-
jected the data from Cable et al. onto the hippocampus reference atlas 
of Yao et al.29 and found that this subset belonged to glutamatergic 
neurons from the dentate gyrus and CA1 (prosubiculum) (Extended 
Data Fig. 8a).

Discussion
LEMUR enables differential expression analysis of single-cell-resolution 
expression data between composite samples, such as tissue biopsies, 
organs, organoids or whole organisms. The method allows for arbitrary 
experimental or study designs, specified by a design matrix, just as in 
ordinary linear regression or in omics-oriented regression methods 
like limma13, edgeR17 and DESeq2 (ref. 14). Applications range from 
comparisons between two conditions with replicates, over paired stud-
ies, such as a series of tissue biopsies before and after treatment, over 
studies with multiple covariates (for example, genetic and drug pertur-
bations), interactions between covariates and continuous covariates. 
The method represents cell-to-cell variation within a condition using 
a continuous latent space. Thus, it avoids, or postpones, the need for 
categorical assignment of cells to discrete cell types or cell states and 
offers a solution to one of the challenges identified by Lähnemann et al.1.

We demonstrated the utility of the approach on three prototypical 
applications, and we benchmarked important aspects of its perfor-
mance on a compendium of 13 datasets. The application cases are a 
matched control–treatment study of patient samples in glioblastoma, 
an atlas of zebrafish embryo development in which time is a continuous 
covariate and a spatial transcriptomic study of Alzheimer’s plaques 
in which plaque density is a continuous covariate. We showed how 
LEMUR identified biologically relevant cell subpopulations and gene 
expression patterns.

To achieve this, we combine latent space representation by dimen-
sion reduction with regression analysis in a new matrix factorization 
approach. The model is predictive: for each observed cell, it predicts 
its gene expression in any of the conditions, even though it was only 
measured exactly once. Moreover, as each cell is parameterized by a 
position in P-dimensional real vector space, the model can also predict 
the expression of ‘synthetic cells’ at unobserved positions, for instance, 
in between observed cells or extrapolating out, in any condition. We 
use these capabilities for differential expression analysis.

We detect neighborhoods of cells with consistent differential 
expression patterns with respect to comparisons (‘contrasts’) of inter-
est. The neighborhoods are found in a data-driven manner. No a priori 
categorization of cells into ‘cell types’ is needed, but, once neighbor-
hoods have been identified, one can annotate or compare them with 
whatever annotation that is relevant.

Our current implementation of neighborhood finding leaves room 
for future improvements. It is stochastic, by relying on a random sample 
of one-dimensional projections of point clouds in P-dimensional space. 
Thus, repeated running of the algorithm can result in (slightly) different 
outputs. Also, it addresses the post-selection inference problem using 
a rather heavy-handed data-splitting approach.

Unlike some other single-cell data integration and expression 
prediction tools, LEMUR is built around linear methods. It is param-
eterized with a modest number of parameters and uses a small num-
ber of layers. This is in contrast to the often-repeated claim that the 
complicatedness of single-cell data necessitates nonlinear methods 
and ’deep’ models. We showed that our approach based on simple, 
linear matrix decomposition using a sufficiently high-dimensional 
latent space is capable of representing the data in a useful manner. 
Compared to deep-learning approaches, LEMUR’s interpretable and 
easy-to-inspect model should facilitate dissection and follow-up 
investigation of its discoveries. In Supplementary Note 1, we discuss 
how the LEMUR model differs from other approaches that combine 
dimension reduction and regression.

Overall, we believe that LEMUR is a valuable tool for first-line 
analysis of multi-condition single-cell data. Compared to approaches 
that require discretization into clusters or groups before differential 
expression analysis, representing cell types and states in a continuous 
latent space may better fit the underlying biology and may facilitate the 
precise identification of affected cells. This in turn should ease analysts’ 
work and enable biological discoveries that could otherwise be missed.
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Methods
Our study complies with all relevant ethical regulations. A specific 
ethics board approval was not needed, as we developed a new compu-
tational method and reanalyzed publicly available data.

Given the data matrix Y of size G × C, where G is the number of 
genes and C is the number of cells, consider the decomposition

Y = RZ + γoffset + εεε, (1)

with the G × P-dimensional matrix R, the P × C matrix Z, the G × C matrix 
ε, the G-dimensional vector γoffset (all real valued) and P < min(G,C ). 
Note that we use a recycling convention like the one used in the R lan-
guage for the sum operator (+) for a matrix A and a conformable column 
vector b: (A + b)ij = Aij + bi. To simplify interpretation, we require the 
columns of R to be orthonormal, that is, they form an orthonormal 
basis of a P-dimensional linear subspace of ℝG. Z can then be considered 
the coordinates of C points in that linear subspace, each representing 
a cell. We call it a P-dimensional embedding of the cells. Setting γoffset 
to the row-wise means of Y, the matrices Z and R are fit by minimizing 
the sum of squared residuals

G
∑
g=1

C
∑
c=1
εεε2gc. (2)

PCA is a special case in which, in addition, the columns of R are 
obtained from an eigendecomposition and ordered by eigenvalue. 
Alternatively, PCA can be understood as the decomposition in which 
also Z is orthogonal, which emphasizes the relation to singular-value 
decomposition. In the applications considered in this work, 
P ≪ min(G,C) , and R and Z can be considered a lower-dimensional 
approximation of the full data matrix Y − γoffset.

We extend equation (1) to incorporate known covariates for each 
cell. Thus, we consider not just a single matrix R and a single vector 
γoffset but treat them as functions of the covariates,

R ∶ ℝK → {A ∈ ℝG×P|ATA = IP}

γ ∶ ℝK → ℝG,
(3)

where the arguments of these functions are rows of the C × K design 
matrix X, that is, elements of ℝK. The range of the function R is the set 
of orthonormal G × P matrices whose Gramian ATA is the P-dimensional 
identity matrix IP. Equation (1) then becomes, for each cell c,

Y∶c = R(Xc∶)Z∶c + γ(Xc∶) + εεε∶c. (4)

Setting γ(Xc:) to the least-sum-of-squares solution of regressing Y 
on X, the matrix Z and R ∈ ℛ are fit by minimizing the sum of squared 
residuals (equation (2)), where ℛ is a suitable set of matrix-valued 
functions that we define in the following. Equation (4) with these addi-
tional features can be considered a multi-condition extension of PCA.

Intuitively, this multi-condition PCA finds a function R that gener-
ates for each condition (for each distinct row of the design matrix X) a 
P-dimensional subspace that minimizes the distance to the observed 
data in that condition by rotating a common base space into the optimal 
orientation (Fig. 1c, step 1). Z is the orthogonal projection of the data 
on the corresponding subspace. Stability is ensured by constraining R 
to come from a set ℛ of ‘well-behaved’, smooth functions of the 
covariates.

To construct the function space ℛ, we recall some concepts from 
differential geometry. Given the whole numbers G and P, the set of all 
orthonormal real matrices of dimension G × P is a differentiable mani-
fold, the Stiefel manifold VP(ℝG). For our application, it is appropriate 
to consider two matrices equivalent if they span the same linear sub-
space of ℝG. The set of all such equivalence classes is again a differenti-
able manifold, called the Grassmann manifold Gr(G, P)30,31. Accordingly, 

elements of Gr(G, P) are P-dimensional linear subspaces of the ambient 
space ℝG. Computationally, we represent an element of Gr(G, P) by an 
orthonormal matrix, that is, by one of the members of the equivalence 
class.

We then construct ℛ as the set of all functions R that have domain 
and codomain as in equation (3) and can be written as

RB(x) = Exp
(Gr)
o (

K
∑
k=1

xkB∶∶k) , (5)

where B is a three-dimensional real-valued tensor of size G × P × K. The 
expression Exp(Gr) is the exponential map on the Grassmann manifold. 
It takes a point o ∈ Gr(G, P) and a tangent vector at that point and 
returns a new point on the Grassmann manifold. Thus, given a choice 
of the point o, which we call the base point, and of the design matrix X, 
the set of all possible B induces ℛ, and fitting equation (4) is achieved 
by fitting B. We use the terms tangent vector and tangent space in their 
standard meaning in differential geometry and represent tangent vec-
tors with G × P matrices. The name exponential map derives from the 
fact that, for some Riemannian manifolds, the exponential map coin-
cides with the matrix exponential; however, this is not the case for 
Grassmann manifolds. Here, the exponential map for a base point o 
and a tangent vector represented by A ∈ ℝG×P  is

Exp(Gr)o (A) = oVdiag(cosd)VT + Udiag(sind)VT, (6)

where U and V are the left and right singular matrices of the 
singular-value decomposition of A (A = U diag(d) VT)30.

The argument of the exponential map in equation (5) is a linear 
combination of the slices of B. Each slice of B::k represents a tangent 
vector (B∶∶k ∈ 𝒯𝒯oGr(G,P)) and so are their linear combinations (a tangent 
space is a vector space).

We analogously parameterize the offset function γ(x) = ∑kΓ: kxk, 
where Γ ∈ ℝG×K . Accordingly, fitting γ is just ordinary linear 
regression.

Non-distance preserving extension
Multi-condition PCA (equation (4)) fits subspaces that approximate 
the data for each condition but does not depend on shape, scale or, 
more generally, the statistical distribution of the cells’ embeddings in 
that subspace. Therefore, it can also not adjust for (‘absorb’) such dif-
ferences. This rigidity increases stability and can be a desirable model 
feature for some applications by preventing overfitting, but, for other 
applications, it can also be a limitation. We extend equation (4) with an 
optional term S, a non-distance preserving, affine isomorphism of ℝP, 
to (1) obtain additional flexibility and (2) enable input of prior knowl-
edge and user preferences in cell matching:

Y∶c = R(Xc∶)S(Xc∶)Z′∶c + γ′(Xc∶) + εεε∶c. (7)

Here, Z′∶c ∶= S−1(Xc∶)(Z∶c − s0(X∶c)). The extra term S(x) distin
guishes equation (7), the LEMUR model, from its special case for S ≡ IP, 
multi-condition PCA, equation (4). To allow translations, we also change 
γ′(x) = γ(x) + R(Xc∶)s0(x), with s0 defined below.

Next, we describe the selection of S and s0. It is designed to enable 
the analyst to state preferences about which sets of cells from different 
conditions should be considered to match each other, that is, are 
intended to be the same. We expect such a specification in the form  
of E ∈ ℕ0 sets 𝔼𝔼1,… , 𝔼𝔼E, where each 𝔼𝔼i ⊂ {1,… ,C} and 𝔼𝔼i ∩ 𝔼𝔼j = ∅ for i ≠ j. 
These can be derived, for example, from a set of matching cell type 
annotations (landmarks) or Harmony’s maximum diversity clustering. 
This provision of preferences is optional; if it is lacking, E = 0, the first 
term in equation (8) vanishes, the optimization simply results in S = I, 
the identity, and LEMUR reverts to multi-condition PCA. S is obtained 
as a solution to the optimization problem

http://www.nature.com/naturegenetics
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arg min
S,s0∈𝒮𝒮𝒮

E
∑
e=1

∑
c∈𝔼𝔼e

(Me − S−1 (Xc∶) (Z∶c − s0 (Xc∶) )
2 + λ (‖‖W

(0)‖
‖
2

2
+ ‖W‖22) ,

(8)

where the optimization domain 𝒮𝒮 is described in the next paragraph  
and Me = |#𝔼𝔼e|

−1∑c∈𝔼𝔼e
Z∶c  is the mean latent space coordinate of the  

cells in similarity set 𝔼𝔼e.
The optimization domain 𝒮𝒮, that is, the set of possible S(x) and s0, 

is the set of affine transformations

S(x) = I +
K
∑
k=1

xkW∶∶k

s0(x) =
K
∑
k=1

xkW
(0)
∶k ,

(9)

which is parameterized by the three-tensor W with dimensions P × P × K 
and the P × K matrix W(0).

The parameter λ regularizes the optimization and pulls the result 
toward S(x) = IP and s0(x) = 0.

We provide additional details on how the LEMUR model is imple-
mented in Supplementary Note 1.

Execution details
Integration and prediction benchmark. The integration benchmark 
measured the ability of methods to adjust for known covariates while 
retaining the biological structure of the data. The prediction bench-
mark measured, for the tools that support it, how well they are able to 
predict the expression of a cell in arbitrary conditions.

For both benchmarks, we used 13 single-cell datasets18,32–43 that 
we downloaded from publicly available sources (see Data availability 
for details).

We preprocessed each dataset using the transformGamPoi pack-
age’s shifted_log_transform function with the default parameters. We 
identified the 500 most variable genes and held out 20% randomly 
chosen cells.

For the integration benchmark, we compared scVI version 1.1.2 
(ref. 5), CPA version 0.8.3 (ref. 7), Harmony version 1.1.0 (ref. 2), LEMUR 
(version 1.1.5) with S ≡ IP (multi-condition PCA), LEMUR with R fixed to 
the principal vectors of ̃Y  (parametric Harmony) and the full LEMUR 
model. For PCA, we used the fast implementation from the irlba pack-
age (version 2.3.5.1).

Our software is available as an R package on Bioconductor44 and 
as a Python package on PyPI45.

For the prediction benchmark, we did not consider Harmony, 
as it does not support going back from the integrated embedding to 
the gene expression space. Instead, we included two other compari-
sons, which can be considered baseline controls: a linear model-based 
method that predicts the mean of each condition and identity predic-
tion, which returns the original expression observed for a cell inde-
pendent of the requested condition.

We tried to run the methods as much as possible with the default 
parameters. On the advice of the authors, we ran CPA directly on the 
counts (that is, not on the variance-stabilized data) with the parameters 
from the tutorial (https://cpa-tools.readthedocs.io/en/latest/tutori-
als/Kang.html) on integrating the Kang dataset (most importantly, 
64 latent dimensions, a negative binomial loss and a learning rate of 
0.0003). For the predictions from CPA, we, again based on the recom-
mendations of the authors, log transformed the predicted counts 
before comparing them to the variance-stabilized data. For LEMUR, 
we used 30 latent dimensions and a test fraction of 0%. We ran PCA 
with 30 latent dimensions.

For the evaluation of the integration results displayed in Fig. 3b, 
we used the integration performance of the held-out data compared to 
the training data, except for Harmony, which only integrates its training 
data and has no concept of integrating further, previously unseen data. 

To make the output of the different methods comparable, we brought 
each embedding to a common scale by subtracting the mean for each 
latent dimension and dividing by the average cell vector length. On this 
rescaled input, we calculated nine different metrics. Four metrics were 
used to assess the adjustment for the known covariates:

•	 k-NN mixing. We identified the k = 20 nearest neighbors from 
the training data for each cell from the held-out data. We then 
calculated how many of those 20 neighbors were from the 
same condition as the original cell. We averaged these values 
across all held-out cells to derive a single metric for each 
dataset-and-method pair.

•	 Maximum mean discrepancy (MMD). We calculated the MMD 
discrepancy with a radial basis function kernel between the 
held-out and training data after subsampling both to a com-
mon number of cells46. We calculated the discrepancy using 
scaling factors between 10 and 10−3 (50 values, log spaced) 
and 100, 200 and 500 cells and finally averaged the results to 
obtain a single metric.

•	 Wasserstein distance. We calculated the Wasserstein distance 
between held-out and training cells using the Wasserstein 
function from the transport package after subsampling to a 
common number of cells. We averaged the results for 100, 200 
and 500 cells.

•	 Variance explained by condition. We calculated the ratio of 
residual variance after accounting for known covariates over 
the total variance of the embedding.

We used these four metrics to assess how well each embedding 
retained the biological information:

•	 k-NN overlap. We calculated a reference embedding with PCA, 
scVI and CPA that did not try to integrate the conditions. Next, 
we compared for each condition the similarity of the nearest 
neighbors on the integrated and non-integrated embeddings. 
We used the PCA as a reference for Harmony and LEMUR. CPA 
did not support fitting an embedding without a condition vari-
able; thus, we randomly assigned each cell to a condition and 
thus created a perfectly mixed dataset in which no additional 
integration was needed.

•	 ARI. We calculated a reference embedding with PCA, scVI and 
CPA that did not try to integrate the conditions. Next, we com-
pared the similarity of a walktrap clustering on the integrated 
and non-integrated embeddings. We calculated the ARI to 
measure the cluster consistency using the ARI function from 
the aricode package.

•	 Normalized mutual information (NMI). We followed the same 
procedure as for the ARI but calculated the NMI using the NMI 
function.

•	 Variance explained by cell type. We calculated the ratio 
of residual variance after accounting for the cell types as 
annotated in the original data over the total variance of the 
embedding.

Lastly, we also considered one merged metric that directly con-
trasts the adjustment for the known covariates and the retention of 
the biological information.

•	 Variance explained by condition versus cell type. We calcu-
lated the ratio of residual variance after accounting for the 
known conditions plus the cell types over the residual variance 
accounting only for the cell types.

For the prediction benchmark, we considered a total of ten  
metrics. We considered two conditions for each dataset and  
always calculated the predicted expression for condition B for cells 
from condition A against the observed expression in condition B and 
vice versa.

http://www.nature.com/naturegenetics
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•	 L2 mean. The L2 distance between the mean prediction against 
the mean observed expression across the whole data.

•	 L2 mean per cell type. The L2 distance between the mean 
prediction against the mean observed expression for each cell 
type.

•	 L2 of the standard deviation. The L2 distance between the 
standard deviation of the prediction against the standard 
deviation of the observed expression across the whole data.

•	 L2 of the s.d. per cell type. The L2 distance between the stand-
ard deviation of the prediction against the standard deviation 
of the observed expression for each cell type.

•	 R2 mean. The correlation between the mean prediction against 
the mean observed expression across the whole data.

•	 R2 mean per cell type. The correlation between the mean 
prediction against the mean observed expression for each cell 
type.

•	 R2 of the s.d. The correlation between the standard deviation of 
the prediction against the standard deviation of the observed 
expression across the whole data.

•	 R2 of the s.d. per cell type. The correlation between the stand-
ard deviation of the prediction against the standard deviation 
of the observed expression for each cell type.

•	 MMD. We calculated the MMD discrepancy between the 
predicted and observed data after subsampling to a common 
number of cells with a radial basis function kernel46. We calcu-
lated the discrepancy using scaling factors between 10 and 10−3 
(50 values, log spaced) and 100, 200 and 500 cells and finally 
averaged the results to obtain a single metric.

•	 Wasserstein distance. We calculated the Wasserstein distance 
between predicted and observed data using the Wasserstein 
function from the transport package after subsampling to a 
common number of cells. We averaged the results for 100, 200 
and 500 cells.

Variance-explained comparison. For all 13 datasets used in the inte-
gration and prediction benchmark, we compared the fraction of vari-
ance explained by LEMUR and by PCA. To make the results comparable, 
we manually regressed out the effects of the known covariates. We 
compared irlba’s approximate PCA implementation and the LEMUR 
model accounting for the known covariates. We fixed the linear_coeffi-
cient_estimator = ‘zero’, as we had already manually removed the linear 
effects. We measured the elapsed time using R’s system.time function 
and the memory using the GNU time command.

Differential expression and neighborhood inference benchmark. 
For the differential expression benchmark, we took the gene expres-
sion values of the top 8,000 highly variable genes from individual 
conditions and appended 200 simulated genes. We assigned each 
cell to a synthetic control or treatment condition. This ensured  
that, for all original genes, there was no real differential expression, 
whereas, for the 200 simulated genes, we were able to control the 
number of cells with a differential expression pattern and the log 
fold change.

We only considered the dataset–condition combinations that had 
the most independent replicates. We chose two conditions from the 
Angelidis et al.32, Goldfarbmuren et al.37 and Kang et al.18 data, three 
conditions from Kang et al.38 and one from Sathyamurthy et al.42. Thus, 
we had 11 datasets in total.

We then simulated 200 genes for each dataset with a varying num-
ber of affected cells, which we repeated ten times per dataset. We first 
performed k-means clustering on the 50-dimensional embedding of 
the data with either two, three, ten or 20 clusters. Next, for each gene, 
we chose one of the clusters and fixed the log fold change to 0.5, 1, 2 or 
4, respectively (that is, for the smaller clusters, we used a larger effect 
size). The counts were simulated according to

Ygc = GammaPoisson(μ = 2ηηηgcsfc,α = 0.2)

ηηηgc = β(0)g + β(DE)g x(is DE)c + β(samp 1)g x(samp 1)c +⋯
, (10)

where μ is the mean and α is the overdispersion parameter of the 
Gamma-Poisson distribution, β(DE)g  is the log fold change, x(is DE)c  indi-
cates whether cell c is inside the selected cluster, sfc is the size factor 

for cell c calculated on the observed genes and β(samp 1)g x(samp 1)c  simulates 

a sample-specific effect in which β(samp i)g  is drawn from a normal distri-

bution with a standard deviation of 0.1.

Using the known set of simulated genes (true positive) and original 
genes (true negatives), we calculate the TPR (fraction of identified true 
positives) and the false discovery proportion (fraction of false positives 
among all positives).

Our default settings for LEMUR in the differential expression 
benchmark were

•	 30 latent dimensions,
•	 a test fraction of 50%,
•	 directions = ‘randomized’,
•	 selection_procedure = ‘zscore’,
•	 size_factor_method = ‘normed_sum’ and
•	 test_method = ‘edgeR’.

In addition, we tested several variations:

•	 LEMUR with test_method set to glmGamPoi16 or limma13,
•	 LEMUR with eight or 80 latent dimensions,
•	 LEMUR with a test fraction of 20% and 80%,
•	 LEMUR with size_factor_method = ‘ratio’,
•	 LEMUR with directions = ‘contrast’ or 

selection_procedure = ‘contrast’,
•	 LEMUR with S ≡ I (multi-condition PCA) or R fixed to the 

principal vectors of ̃Y (parametric Harmony),
•	 LEMUR where we reused the training data for testing and
•	 LEMUR where the test and training data were generated 

through count splitting47.

We compared the FDR and TPR from LEMUR against seven alter-
native methods:

•	 Global test: a single test with edgeR or glmGamPoi across the 
full dataset

•	 Cell type test: one test per cell type (using the annotation from 
the original data) with edgeR or glmGamPoi

•	 Cluster test: one test per walktrap cluster on the Harmony 
integrated data with edgeR or glmGamPoi

•	 miloDE: one test per Milo neighborhood using edgeR10 (ver-
sion 0.0.9000; hash, 8803302d).

For the cell type test, the cluster test and miloDE, which perform 
more than one test per gene, we considered a group of cells as positive 
if they contained more than 60% changed cells (at least ten). If none 
of the cell groups for a gene fulfilled this criterion, the group with the 
largest fraction of changed cells was considered as positive. A group of 
cells was considered negative if less than 10% of the cells were changed. 
If the fraction of changed cells was between 10% and 60%, the status for 
that group of cells was considered indeterminate, and the group was 
ignored for the TPR and FDR calculations.

Glioblastoma analysis. We downloaded the count data and patient 
annotations from GSE148842. We transformed the counts using the 
function shifted_log_transform from the transformGamPoi package 
and filtered out all genes with a total of less than six counts. We filtered 
out all cells that did not pass the quality filters from the scuttle pack-
age’s perCellQCFilters function and also those cells that had less than 
800 or more than 12,000 counts.

http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE148842


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01996-0

We assigned the cell types and tumor status following the methods 
from the original publication20. We clustered the Harmony integrated 
data with walktrap clustering into four clusters. Zhao et al.20 identified 
a chromosome 7 duplication and a chromosome 10 deletion in all sam-
ples. Accordingly, we assigned the cluster that showed upregulation 
of genes from chromosome 7 and downregulation of genes from chro-
mosome 10 as the tumor cells. The other three clusters were assigned 
based on marker genes as shown in Extended Data Fig. 5a.

We ran LEMUR with 60 latent dimensions and a test fraction of 50%; 
otherwise, we used the same defaults as in the differential expression 
benchmark. The full dataset consisted of three conditions: control, 
panobinostat and etoposide. For the analysis, we decided to focus on 
the contrast between panobinostat and control and do not show any 
data from etoposide-treated cells.

The color scale of Δ in Fig. 4c was capped at the 95% quantile of 
the absolute values, squishing more extreme values to the range. 
The difference of the difference test in the rightmost panel of Fig. 4c 
was significant at FDR < 0.1 considering all genes with a significant 
difference (FDR < 0.1) between control and panobinostat inside the 
neighborhood.

We identified gene ontology terms related with upregulated and 
downregulated genes using the clusterProfiler package’s enrichGO 
function on the 200 genes with the smallest P value, comparing them 
against the universe of genes that passed quality control.

Zebrafish embryonic development analysis. The data downloaded 
from GSE202639 were already quality controlled. We subsetted the 
full dataset to the control cells (ctrl-inj and ctrl-uninj) for the 16 time 
points between 18 h and 48 h and the 2,000 most variable genes. We 
transformed the counts using transformGamPoi package’s shifted_log_
transform function and fit a natural spline model with three degrees of 
freedom and 80 latent dimensions. We tested the difference between 
the 48-h and the 18-h time points using the settings from the differential 
expression benchmark.

For the interpolation in Fig. 5b, we selected two pairs of cells and 
linearly interpolated their latent position. The selected cells were not 
from the same time point, but, as they only served as anchors in the 
latent space Z, this did not influence the results. We projected ten 
synthetic cells onto the two-dimensional UMAP. We calculated the 
mean of the observed expression values from the 50 nearest neighbors 
to five synthetic cells at interpolation points 0, 0.25, 0.5, 0.75 and 1. 
We predicted the gene expression according to a spline fit for all ten 
synthetic cells at 50 time points equally spaced between 18 and 48 h.

To prioritize the genes that we manually inspected, we tested 
whether a spline model with five degrees of freedom could significantly 
better explain the observed expression pattern over time than a linear 
model within a selected cell type.

Alzheimer plaque spatial analysis. We downloaded the expression 
data for the four mouse hippocampi with the Alzheimer plaque densi-
ties from the BROAD’s single-cell repository (https://singlecell.broad-
institute.org/single_cell/study/SCP1663). We subsetted the genes to a 
common set and filtered out lowly expressed genes (total counts per 
gene less than 50). We further filtered out cells with more than 20% 
mitochondrial reads and less than 200 or more than 5,000 total counts.

We fit LEMUR with 30 latent dimensions and a test fraction of 60% 
on an ordered factor of the plaque density cut into ten equally sized 
bins. We contrasted the largest bin against the smallest bin using the 
same settings as in the differential expression benchmark.

Statistics and reproducibility
Our benchmark compared LEMUR against several other methods for 
different use cases in single-cell analysis. For each task, we compared 
against available state-of-the-art methods. To ensure that our results 
are robust, we ran the analyses on six to 13 independent single-cell 

datasets. We did not use any statistical method to predetermine the 
sample size. No data were excluded from the analyses. The experiments 
were not randomized. The investigators were not blinded to allocation 
during experiments and outcome assessment.

Our benchmark is fully reproducible using the code available on 
Zenodo48.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available: Angelidis et al.32 
(GSE124872), Aztekin et al.33 (Bioconductor, https://bioconductor.org/
packages/scRNAseq), Bunis et al.35 (Bioconductor, https://bioconduc-
tor.org/packages/scRNAseq), Goldfarbmuren et al.37 (GSE134174), 
Hrvatin et al.38 (GSE102827), Jäkel et al.39 (GSE118257), Sathyamur-
thy et al.42 (GSE103892), Kang et al.18 (Zenodo, https://zenodo.org/
records/4473025), Bhattacherjee et al.34 (Zenodo, https://zenodo.
org/records/4473025), Skinnider et al.43 (Zenodo, https://zenodo.
org/records/4473025), Cano-Gamez et al.36 (Zenodo, https://zenodo.
org/records/5048449), Cano-Gamez et al.41 (Zenodo, https://zenodo.
org/records/5048449), Pijuan-Sala et al.40 (Bioconductor, https://
bioconductor.org/packages/MouseGastrulationData), Zhao et al.20 
(GSE148842), Saunders et al.24 (GSE202639) and Cable et al.26 (SCP1663). 
Source data are provided with this paper.

Code availability
The lemur R package is available at https://bioconductor.org/pack-
ages/lemur, and the code to reproduce the analysis is available at 
https://github.com/const-ae/lemur-Paper, which we also permanently 
archived using Zenodo https://doi.org/10.5281/zenodo.12726369 (ref. 
48). A Python implementation of the LEMUR model (without the differ-
ential testing capabilities) is available at https://github.com/const-ae/
pylemur.
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Extended Data Fig. 1 | Comparison of integration performance across 13 
datasets. (A) Beeswarm plots for each metric comparing how well each method 
adjusted the latent embedding for the known covariates. The arrows next to 
the metric indicate if higher or lower values indicate better performance. (B) 
Beeswarm plots for each metric comparing how well each method retained the 
biological signal. (C) A beeswarm plot of an integrated performance measure 

comparing the ratio of variance explained by the known covariates vs cell types 
(as a proxy for the biological signal). Each black point is the result one dataset 
and the red points show mean performance. k-NN: k nearest neighbors, MMD: 
maximum mean discrepancy, var. expl.: variance explained, ARI: adjusted Rand 
index, NMI: normalized mutual information.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01996-0

Extended Data Fig. 2 | Comparison of LEMUR and PCA. (A) Line plot of number 
of latent dimensions against the variance explained for PCA and LEMUR. (B) 
Line plot of number of latent dimensions against the computation time for PCA, 

LEMUR, and LEMUR with landmark or Harmony-based integration. The number 
labelled C and G are the number of cells and genes for each dataset, respectively. 
HVG: highly variable genes.
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Extended Data Fig. 3 | Comparison of the ability of each method to predict 
the expression of genes across conditions for 13 datasets. The panels show 
different distance and correlation measures comparing the predicted expression 
in condition B for cells from condition A against the observed expression of cells in 
condition B and vice versa. The L2 distance and the correleation where calculated 

using the mean of the predictions and observations over all cells or per cell type. 
As the distances varied by two orders of magnitude between datasets, we divided 
each distance by the mean per dataset. The red points show the mean per method. 
The arrows next to the metric indicate if larger or smaller values indicate better 
performance. S.D.: standard deviation, MMD: maximum mean discrepancy.
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Extended Data Fig. 4 | FDR control and power for all methods across eleven 
datasets where we average across the ten replicates per dataset. (A) Line plot 
of the nominal FDR against the observed false discovery proportion. The FDR is 
the expectation of the false discovery proportion over many samples. The blue 
line shows the average. (B) Scatter plot of the relative TPR at an FDR = 10% for 

each method across eleven datasets standardized by the mean per dataset. The 
point range shows the mean and standard error. If the average observed FDR 
is larger than 10% the point is greyed out. FDR: false discovery rate, TPR: true 
discovery rate.
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Extended Data Fig. 5 | Glioblastoma cell type assignment and multi-condition 
biplots. (A) Marker gene and (B) chromosome-aggregated expression levels 
for each cell type. The the tumor cells are known to bear an amplification of 
chromosome 7 and a deletion of chromosome 1020, so we identified the tumor 
cluster using the ratio of average gene expression on chromosome 7, resp.  

10, over the average expression on chromosomes 1-5 (C) Multi-condition biplots 
showing (left) the first two dimensions of the LEMUR latent space (Z) for all cells 
overlayed with arrows representing (middle) three cell type marker genes from 
Panel A and (right) a gene with large expression change specifically in myeloid 
cells (HIST3H2A, more details in Extended Data Fig. 6).
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Extended Data Fig. 6 | Differential expression patterns for seven genes with 
the neighborhoods inferred by LEMUR. (A) UMAPs colored by gene expression 
(log-normalized counts). The black line encircles 80% of the cells inside the gene-
specific differential expression neighborhood. (B) UMAPs colored by predicted 

expression change per cell. The cells are separated depending if they are inside 
or outside the neighborhood. (C) Scatter plot of the pseudobulked expression 
values per condition, neighborhood status and sample. ctrl: control, neighb.: 
neighborhood, pan: Panobinostat, expr: expression.
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Extended Data Fig. 7 | Cell type annotation for zebrafish. (A) Left panel: UMAP 
of the full timecourse data with cells colored by tissue type as annotated in 
Saunders et al.24. Middle and right panel: Cell type annotations for central nervous 

system and periderm also from Saunders et al.24. (B) Gene expression of krt8 in the 
periderm over time. (C) Gene expression of nrxn2a in the central nervous system 
over time. The overlayed points are the synthetic cells from Fig. 5B.
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Extended Data Fig. 8 | Cell type annotation for mouse brain datasets.  
(A) UMAP of the Alzheimer’s disease mouse model dataset colored and split by 
cell type annotation provided by Yao et al.29. The dashed shape is the 97% density 
contour of the cells inside the neighborhood. (B) Scatter plot with smoothing 
fit of the pseudobulked gene expression of Jun against the binned amyloid-β 

plaque density. Each dot is the pseudobulked expression per mouse, cell type, 
plaque density bin, and neighborhood status. The text at the top of the graph lists 
the number of cells from that cell type which were inside and outside of the Jun 
neighborhood.
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Extended Data Table 1 | Overview of the patients from whom the glioblastoma biopsies originated
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