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Abstract—Multivariate analysis of high-dimensional datasets
with multiple categorical variables (e.g. surveys, questionnaires)
is a challenging task but can reveal patterns of responses that
are masked from univariate analyses. In this paper we propose a
novel variational inference algorithm to cluster high-dimensional
categorical observations into latent classes. Variational inference
is an approximate Bayesian inference algorithm, which combines
fast optimization methods with the ability to propagate the
uncertainty to the clustering (soft clustering). The model is robust
to misspecification of the number of latent classes and can infer a
reasonable number from the data. We assess the performance on
synthetic and real world data and show that our algorithm has
similar performance to the best other tested method if the correct
number of classes is known and outperforms the other methods
if it the number of classes needs to be inferred. An R-package
implementing our algorithm is available at the Comprehensive R
Archive Network1.

Index Terms—High-dimensional, categorical variables, varia-
tional inference, Bayesian, clustering

I. INTRODUCTION

High-dimensional categorical datasets can be challenging to

handle because the correlation structure grows exponentially

with the number of variables. Consider a questionnaire which

has J questions, where each question has R different cate-

gories of response. If we collect the responses of I individuals,

which are stored in a matrix X with dimensions I × J and

every cell contains one categorical value (A,B,C, . . .), the

correlation structure (i.e. the contingency tensor ΠR1×...×RJ
)

grows exponentially with every additional question and be-

comes too complex to inspect manually for any dataset with

more than a handful of variables.

Clustering is a popular approach to identify low-dimensional

structures embedded within high-dimensional datasets, but

relatively few methods have been proposed to specifically

handle the clustering of categorical datasets in comparison

to the wealth of methods available for continuous data (for

example: [1]–[4]). Our work is motivated by analyses of

large-scale population studies such as the Young Lives study

[5], the OSMI Mental Health in Tech Survey [6], and the

1CRAN.R-project.org/package=mixdir Addional links for reproducing the
figures are available at cwcyau.github.io/publications.html

Fig. 1. Overview of MixDir algorithm. We have a high-dimensional dataset
with categorical values (e.g. the NCPES). We run our MixDir clustering
algorithm and obtain a soft clustering of the individuals into five classes.
Each class has a particular distribution of values for each question. But this
information can still be confusing, so to focus on the most telling response
we look can either look at the questions that best explain the clustering or
for responses r that maximize p(z|Xj = r). In the example above this
would for example be answer B for question 2 which is highly predictive for
an individual to be in class 3. But also answer B for question 3 is highly
predictive for class 1, although it is not the most common answer in class 1
for question 3.

UK National Cancer Patient Experience Survey (NCPES) [7],

where large collections of questionnaire data are available for

many thousands of individuals. The Young Lives study collects

data on childhood poverty over 15 years in four different

countries, the OSMI study collected data on the experience

with mental health issues in the tech sector, and the NCPES

has collected data on the experience and satisfaction of a

large number of British cancer patients with the treatment they

received by the UK National Health Service (NHS). These

studies use questionnaires that are predominantly composed of

categorical questions and the general ambition is to be able to

identify groups of individuals with similar response profiles.

In the case of NCPES, this would enable policy makers to

develop strategies to improve the quality of cancer care in the

UK.

At present, such analyses are typically performed using
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univariate analyses [7] which attempt to associate responses

to individual questions with some outcome of interest. This

approach limits the ability to identify complex, multivariate

response patterns that may manifest as a joint probability
distribution over responses to a number of questions. In the

following, we first summarize the pre-existing approaches

for clustering of high-dimensional categorical data before

proposing a scalable Bayesian latent class model (which we

call MixDir) for modelling high-dimensional categorical data.

We will demonstrate the utility of the approach for the analysis

of the Young Lives, the OSMI and NCPES survey data.

II. EXISTING WORK

Existing approaches for clustering of high-dimensional cat-

egorical data can be grouped into three approaches: (i) multi-

variate clustering approaches, (ii) latent class models and (iii)

latent mixed membership models.

Multivariate clustering approaches adapt standard cluster-

ing techniques for continuous data by specifying similarity

distance measures developed for categorical data explicitly.

For example, k-mode [8] based methods are a variation of the

popular k-means clustering approach [9], where the Euclidean

distance is replaced by an alternative distance metric (for

example the Hamming distance) and the center of a cluster is

not the mean of its member but a vector with the most common

feature for each attribute (i.e. the mode of the members) [8].

ROCK (short for RObust Clustering using linKs) performs

agglomerative clustering [10]. Similarity is measured by the

number of common neighbors of a cluster and in each step

the two most similar clusters are merged, until a threshold is

reached.

Latent class models (LCM) [11]–[13] are mixture models

that assign the set of multivariate categorical observations to

a latent class z. The idea is that within each latent class the

observed variables are statistically independent. LCMs esti-

mate the class probabilities λ and the probability of observing

a particular response for a question conditioned on the latent

class. [13] proposed a nonparametric extension of the model,

where they use a Dirichlet Process prior [14] for the classes,

which they call mixture of product multinomial distributions.

Their model allows them to infer an appropriate number of

latent classes depending on the dataset. They fit their model

using a Gibbs Slice sampling algorithm, but this has two

disadvantageous for clustering: first MCMC algorithms do

not scale to large datasets and second they suffer from the

label switching problem [15]. To address those issues we have

developed a variational inference (VI) method to estimate the

parameters in the basic latent class model and its nonparamet-

ric extension. VI does not randomly sample from the posterior,

but solves an optimization problem of fitting the complex

posterior, by approximating it with a manageable distribution.

This is much faster and has the additional advantage that it

converges to a unique solution for clustering, where the labels

of the clusters are interchangeable. A recent work by [16]

demonstrated that the variational approximation of tempered

posteriors is consistent for mixtures of Gaussian and simple

multinomial distributions.

It is important to distinguish our model from the mixed

membership models [17], which are related but not identical

to our model. In text processing mixed membership models

are also called latent Dirichlet allocation (LDA) [18]. Mixed

membership models differ from latent class models because

they assume that every response from an individual can come

from different latent classes. In LCMs each response of one

individual must come from the same latent class. This means

that the mixed membership model is more flexible, which can

be helpful if for example a text document discusses multiple

topics, but on the other hand can complicate the interpretation,

because it sets the focus on the questions and not on the

individuals.

III. MODEL

We now propose a variant of the LCM structure where we

want to cluster the individuals into K classes depending on

their answers. Our model can be summarized as follows:

λ|α ∼ Dirichlet(α) or DirichletProcess(α) (1)

zi|λ ∼ Multinomial(λ) (2)

Uj,k|β ∼ Dirichlet(β) (3)

Xi,j |Uj , zi = k ∼ Multinomial(Uj,k). (4)

α and β are hyper-parameters that are defined externally and

govern the sparsity of the model. Eq. 1 defines that the size

of the classes is governed by a Dirichlet (in the case of a

simple LCM) or by a Dirichlet Process (in the case of a

nonparametric LCM); for now we will describe the derivation

for the simple LCM and will later present how to extend it to

the nonparametric case. z is a vector that contains the latent

class assignment for each individual. U is a 3-way tensor of

size J × K × R and contains the probability for response r
from an individual from class k for question j. Eq. 4 specifies

that the response of an individual i that belongs to class k
is a draw from a Multinomial distribution according to the

probability vector Uj,k.

The joint distribution of the model is defined as follows

p(λ, z, U,X|α, β) =p(λ|α)
I∏

i=1

p(zi|λ)
J∏

j=1

K∏
k=1

p(Uj,k|β)

×
I∏

i=1

J∏
j=1

K∏
k=1

p(Xi,j |Uj,k)
�(zi=k). (5)

and Figure 2 shows the plate notation of the model.

Finding the maximum likelihood solution would, for this

model result, in an EM algorithm similar to the one described

by [12], but to properly propagate uncertainty through the

model and to be able to infer an appropriate number of latent

classes, we develop a variational inference method that can

address those challenges.
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Fig. 2. The latent class model in plate notation. Each node represents a
random variable and X is shaded gray because it is the only variable which
is observed. The arrows represent the dependency structure and the plates
represent repeated values. K means that we have one Uk for each cluster 1
to K. Analogous we have one cluster assignment and the corresponding set
of observation for each individual 1 to I . λ is the cluster size proportion and
drawn from a Dirichlet(α).

A. Variational Inference

The idea of VI is to define a simplified probability model

q and tune its parameters to approximate the original model

p. We choose q as the mean field approximation of p, which

allows us to write down the variational distribution:

q(λ, z, U) = q(λ)q(z)q(U),

q(λ, z, U) = q(λ;ω)

I∏
i=1

q(zi; ζi)
K∏

k=1

J∏
j=1

q(Uj,k;φj,k)
(6)

where ω, ζ and φ are the free variational parameters, that are

subsequently optimized. We also define that

q(λ;ω) = Dirichlet(ω)

q(zi = k; ζi) = ζi,k

q(Uj,k;φj,k) = Dirichlet(φj,k).

(7)

Using this definition we can derive the update equations

for the variational parameters (Appendix A). We will measure

the approximation with the KL-divergence, which allows us

to maximize the evidence lower bound (ELBO). We find

that iterating between the following equations maximizes the

ELBO and thus also minimizes the KL divergence:

ωk = α+
I∑

i=1

ζi,k. (8)

ζi,k ∝ exp

(
ψ(ωk)− ψ

( K∑
k=1

ωk

)

+
J∑

j=1

[
ψ(φj,k,Xi,j

)− ψ
( Rj∑

r=1

φj,k,r

)])
, (9)

φj,k,r = β +
I∑

i=1

ζi,k�[Xi,j = r]. (10)

The eq. 8 and 10 have an intuitive interpretation. They

are just the weighted number of individuals per class and

the weighted number of observation with a particular feature,

respectively. Note that ψ(ωk) in eq. 9 is the digamma function.

B. Nonparametric extension

The strength of the latent class models is that it is straight-

forward to extend them to more complicated settings. For

example if the true number of latent classes K is not known,

one can use an approximation that assumes a potentially

infinite number of classes of which only a finite number is ever

observed for a finite number of observations. Mathematically

this is expressed with a Dirichlet Process.

A constructive interpretation of the Dirichlet Process is the

stick breaking process, which is very helpful as it allows us to

construct a truncated approximation where we stop after mak-

ing Kmax breaks [19]. We apply this truncated stick breaking

process as a prior for λ to give λk = vk
∏k−1

k′=1 (1− vk′).

As already mentioned each vk is drawn from a Beta

distribution q(vk;κk,1, κk,2) = Beta(κk,1, κk,2) where κk,1
and κk,2 are the variational parameters that are optimized in

the Dirichlet Process instead of the ωk in the simple Dirichlet

model.

The new joint distribution for this model thus is

p(λ, z, U,X|α, β) =
Kmax−1∏

k=1

p(vk|α)
I∏

i=1

p(zi|λ)

×
J∏

j=1

K∏
k=1

p(Uj,k|β)

×
I∏

i=1

J∏
j=1

K∏
k=1

p(Xi,j |Uj,k)
�(zi=k),

(11)

which differs from eq. 5 in the sense that the first term has

been replaced with the truncated stick breaking formulation.

We derive the updates for the free variational parameters

(Appendix B) and find that iteratively running the following

equations maximizes the ELBO for the nonparametric model.

κk,2 = α2 +
I∑

i=1

Kmax∑
k′=k+1

ζi,k′ , κk,1 = α1 +
I∑

i=1

ζi,k, (12)

ζi,k ∝ exp

(
ψ(κk,1)− ψ(κk,1 + κk,2)

+
k−1∑
k′=1

[ψ(κk′,2)− ψ(κk′,1 + κk′,2)]

+
J∑

j=1

[
ψ(φj,k,Xi,j )− ψ

( Rj∑
r=1

φj,k,r

)])
(13)

The update equation for φj,k,r (eq. 10) does not differ

from the one in the parametric model, but the updates for

the Dirichlet Process parameters and ζi,k change.
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C. Handling missing data

We can reformulate the joint distribution of eq. 5 to incor-

porate missing data

p(λ, z, U,X|α, β) =p(λ|α)
I∏

i=1

p(zi|λ)
J∏

j=1

K∏
k=1

p(Uj,k|β)

×
K∏

k=1

∏
(i,j)∈So

p(Xo
i,j |Uj,k)

�(zi=k)

×
K∏

k=1

∏
(i,j)∈Sm

p(Xm
i,j |Uj,k, zi = k)

where So is the set answer that were observed and Sm is the

set of answers that are missing for each individual.

If we assume that the data is missing completely at random

(MCAR), which means that the chance of missing a value is

unrelated to the latent class, the unobserved answer or any

other previous answer, then p(Xm
i,j |Uj,k, zi = k) = const.

The estimation of the free variational parameters is thus

independent of the missing values and they can be skipped

during the variational updates. To impute the missing values,

one would simply draw a latent class based on the observed

data and draw replacements for the missing values from

p(Xm
i,j |Uj,k, zi = k). If on the other hand we believe that

the missingness of a data point contains useful information

for the inference, it is best recoded as an additional possible

response r.

IV. APPLICATIONS

In this section we first want to analyze the performance

of our proposed algorithm using a simulation study and then

we used the temporal consistency of the inferred clusters of

the Young Lives survey as a real-world example. Lastly, we

apply our model to analyze the latent structure of the OSMI

Mental Health in Tech and the 2015 UK National Cancer

Patient Experience survey.

A. Simulation study

To demonstrate that that our algorithm is able to identify

latent structure in a high-dimensional dataset and to give an

idea how it performs compared to other clustering algorithms

for categorical data, we generated a dataset with a known latent

structure. First, we generate four latent classes and for each

class a prototypical list pk of length 5. Then we assign each

individual randomly to one of the four classes. Each element

in this list pk is a vector of length R, which contains the

proportions to draw response r if an individual belongs to

class k. Most of the entries have a roughly equal chance for

each response or just a slight bias, but a few of them are

highly specific for one class. Those are the ones that need to

be picked up by a methods to produce a good clustering result.

In each experimental run we vary the signal to noise ratio

of the dataset, to test the performance with a range different

settings.

Fig. 3. Performance comparison on a synthetic dataset of the k-mode,
ROCK, the EM algorithm for the latent class model (poLCA) and our
implementation with a Dirichlet Process prior (mixdir DP) and the simple
Dirichlet prior (mixdir). The performance is measured with the adjusted Rand
index (ARI) that calculates the overlap between the inferred clustering and
the ground truth on the synthetic dataset. The significance test is a two-sided
paired Wilcoxon rank sum test and NS. indicates a p-value > 0.05, one star
indicates p > 0.01. two stars p > 0.001 and three stars indicate p < 0.001.
The red box shows the mean and the bootstrapped confidence limits. The
algorithms are tested in two settings one where K is the correct number of
latent classes in the model (A) and one where K is an overestimate of the
number of latent classes (B).

We compared the parametric and nonparametric variants of

MixDir algorithm using the Dirichlet and Dirichlet Process

priors respectively (the latter we refer to as MixDir-DP)

with three other algorithms: the ROCK algorithm [20], one

for k-mode [21] and an EM inference implementation of

the latent class model [12] called poLCA. We chose these

three algorithms, because they were all readily available as

packages for the popular and widely used R statistical com-

puting platform [22], which is also the platform we used for

implementing our algorithm. This should be kept in mind when

comparing for example the runtimes of the algorithms, where

a bad performance could just be explained by an inefficient

implementation. In terms of time complexity with respect

to the number of observations n ROCK has a worst case

time complexity of O(n2 log(n)). The k-mode algorithm is

linear to n, as are the three latent class models. Interestingly

although ROCK has the worst theoretical time complexity of

the compared methods, it consistently ran the fastest.

We measure the performance of the clustering algorithms

using the adjusted Rand index (ARI) [23], which is a popular

measure for comparing two clustering results. In our case

we compare the proposed clustering of each algorithm to the

ground truth. The ARI is 0 when the proposed clustering is as

good as random and 1 if the algorithm recovered the ground

truth. It is important to note that our algorithm produces a

probabilistic output for each observation to belong to each

class (also called soft clustering). For comparison with the

other methods we assign each individual to the latent class

for which it has the highest probability.

Figure 3 shows the performance on 100 differently initial-
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Fig. 4. Run-time analysis of the k-mode, ROCK, the EM algorithm for the
latent class model (poLCA) and our implementation with a Dirichlet Process
prior (mixdir DP) and the simple Dirichlet prior (mixdir) on a dataset with
1000 observations for 5 questions with 5 to 15 categories each. The red box
shows the mean and the bootstrapped confidence limits. The runtime was
measured on a 4 year old laptop with a Intel Core i7-3635QM processor.

ized datasets for all five clustering methods with varying signal

to noise ratios. We tuned the signal to noise ratios such that

we cover the whole range of results for the methods ranging

from cases where all methods achieve a decent clustering to

cases where none of the methods is able produce a clustering

better than random. In Figure 3A we can see that if K is

set to the correct number of latent classes the three LCMs

outperform k-mode and ROCK and that there is no significant

difference between our methods and poLCA. Only if we mis-

specify K (Figure 3B), something that can easily happen on

a real world dataset, we see that our models outperform the

other approaches. When we actually look into the inferred

clusters we can see that for high performing examples of

MixDir with the Dirichlet Process prior the method is able

to recover the correct number of four classes even if K = 8.

Figure 4 shows that the increased performance comes at the

cost of an increased runtime.

A particular challenge with the ROCK algorithm is that it

relies on a user-defined parameter θ that defines the minimum

similarity so that two elements are considered a neighbor. The

resulting clustering strongly depends on this parameter, but

there is little guidance to choosing it, so we simply used the

suggested value of θ = 0.5 in all of the above examples. Our

method also has hyper-parameters (we used α = 1 and β =
0.1), but they have less of an effect on the result, especially

when a lot of data is provided. The hyper-parameters serve

as pseudo-counts in eq. 8 and 10 and thus usually need to be

within the same magnitude as the number of observations per

latent class and category, respectively, to affect the clustering.

The above test is to a certain extend self serving, because

we use the same model to generate the data that we also use to

classify it. So it is important to see how the model behaves if

the model is misspecified. We will test the performance of our

model on data generated from a mixed membership model,

which also emphasizes how our model differs. We generate

Fig. 5. Clustering of mixed-membership data using mixdir, poLCA and
mixedMem. The data consist of 2000 individuals with 40 features which are
assigned to one of two classes. The top row shows the percentage for each
individual how many of its features are assigned to class A.

a dataset of 2000 individuals with 40 features that can take

one out of three different values. We have two latent classes

A and B, but instead of assigning each individual to one of

the classes, each feature of every individual is assigned to a

class. This means that an individual can be truly a 50/50 mix

of class A and B, namely when 20 features are from A and

20 from B. This is the generative model that is assumed by

mixed membership models. We cluster this data using MixDir,

poLCA and an R implementation for fitting mixed membership

models (mixedMem) [24].

Unsurprisingly the mixed membership model performs best

in the classification task and is able to recover for nearly every

individual the correct fraction of membership in class A and

B (Fig. 5). In contrast, the latent class models (poLCA and

MixDir) assume that every individual belongs exclusively to

class A or B. They are still able to classify most individuals

correctly whether they are mostly from class A or B, but

for individuals with mixed response profiles, poLCA makes

some classification errors due to the hard assignments it

reports. However, the probabilistic output of MixDir means

that individuals with a mixed response profile will receive an

uncertain posterior class assignment. This is a good example

where the probabilistic nature of our clustering algorithm can

be an helpful indicator of model mis-specification.

B. Young Lives

Next, we consider performance using a real-world data set

from The Young Lives Survey. This survey is an international

study of childhood poverty. It follows children in Ethiopia, In-

dia, Peru and Vietnam over 15 years tracking indicators about

the health of the children, literacy, wealth of the household

and many more indicators. So far four rounds of surveys have

been conducted (in 2002, 2006, 2009 and 2013) following

the same children from birth to their teens. Initially, we

focused on the Ethiopian dataset and specifically the younger

cohort with children aged 1, 5, 8 and 12 years in the rounds

respectively. We took several steps to clean the data: removal

of unique identifiers, binning of continuous variables, removal
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Fig. 6. Performance comparison on the Young Lives Ethiopia datasets.
The performance is the adjusted Rand index (ARI) between the clusterings
of the four rounds and the algorithms were run 25 times on 20% randomly
sampled individuals. The significance test is a two-sided paired Wilcoxon
rank sum test, NS. indicates a p-value > 0.05 and the stars indicate p-values
of > 0.01, > 0.001 and < 0.001. The red box shows the mean and the
bootstrapped confidence limits. We once set K to a small number of latent
classes (A) and once we to an overestimate of the number of latent classes
(B).

of children that dropped out and removal of columns without

any variation. In the end we worked with a dataset of about

1200 children, 52 questions and a median 4.5 different answers

per question.

We then wanted to compare the temporal consistency of the

clusters that different algorithms identify in the four rounds.

We use the ID of the children as ground truth and calculate the

adjusted Rand index (ARI) [23] between the first and second,

first and third, first and fourth, second and third, second

and fourth, and third and fourth rounds. To have sufficient

statistical power to detect performance differences and ensure

consistent results, we repeat the procedure 25 times and each

time randomly sample 20% of the individuals. The assumption

in this analysis is that the groupings of children across the

years do not change dramatically.

Since only MixDir-DP provides a means for automatically
selecting the number of latent classes, we first considered

an analysis where we prefix the number of latent classes

to fixed values (K = 5 and 25) for all algorithms. With a

smaller number of classes, we find that the latent class methods

(poLCA, mixdir and mixdir DP) outperform k-mode and

ROCK (Figure 6A). With a larger number of classes (i.e.

K = 25) we find that our algorithm outperforms all other

methods including poLCA (Figure 6B). To ensure that our

result is reproducible we also ran the same experiment on the

datasets from India, Peru and Vietnam (Figure 7A,B). In terms

of the runtime, we find that on the Young Lives dataset our

method outperforms the others (except for ROCK, but which

had the worst performance) (Figure 7C,D).

C. OSMI Mental Health in Tech Survey 2016

Open Sourcing Mental Illness (OSMI) is a non-profit cor-

poration that is dedicated to mental wellness in the technology

Fig. 7. Cluster consistency and runtime for all algorithms on all four
countries. The performance of each method is the adjusted Rand index (ARI)
between the clustering of the first and second, first and third, first and fourth,
second and third, second and fourth, and third and fourth round. The process
was run 25 times on 20% randomly sampled individuals. The methods are
ordered by mean ARI. The red boxes show the mean and the bootstrapped
confidence limits. We compare two different settings K = 5 (A, C) and
K = 25 (B, D), which are likely under- and overestimations of the true
number of latent classes in the data. To ensure that ROCK divides the dataset
into more than one cluster we had to set θ = 0.1.

industry. Part of this effort is the collection of data on the state

of mental health in the technology sector, including a survey

from 2016 with responses of 1,400 individuals. The survey

consists of a questionnaire with 63 different questions [6]. We

applied MixDir to explore latent structure within this survey

data.

Before running the clustering algorithm we needed to clean

the data: we removed free-form answers, filtered out self-

employed individuals, who were asked different questions,

and summarized the responses which mental health disorder

individuals had into single consistent values. In the end we

worked with a dataset of 1,146 individuals with responses for

46 different questions and about 4% missing values.

The number of latent classes is unknown and our inference

of this quantity will be determined by our prior beliefs. We

therefore explored a range of hyperparameters for the Dirichlet

Process prior with an increasingly penalization on the creation

of new classes by setting α1 to 1, 10, 100 and 1000. We always

set Kmax = 25 which is enough to not hamper the fitting but

keeps the algorithm tractable. Figure 8A shows an alluvial plot

tracing how each individual’s class assignment changes as a

function of increasing α1 - the smaller classes are merged as

this parameter grows. This visualisation provides a very useful

means of understanding how the clustering structures alters as

a function of our prior beliefs (encoded in the hyperparameter

α1) allowing us to partially objectify otherwise subjective

beliefs about the number of latent classes. We decided to

use α1 = 100 for the subsequent analysis because it capture
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Fig. 8. Analysis of the 2016 OSMI Mental Health in Tech Survey. A is an alluvial plot that shows the effect of clustering the data with an increasing level
of α1. If a mental health disorder has been diagnosed the band is colored green, if not purple. Flows with less than 10 individuals are suppressed to reduce
the visual clutter. Individuals that were assigned to classes bigger than E are summarized in the ”Other” block. The red rectangle highlights the parameter
setting α1 = 100 that was used in the other plots B-E for the more detailed analysis. B shows the class assignment probabilities for each individual. C is a
bar plot that shows how many individuals in the first 4 classes have a diagnosis of a mental disorder. D is a bar plot that shows how many individuals in the
first 4 classes answered the question ”Do you think that discussing a mental health disorder with your employer would have negative consequences?”. E is
a plot of the contingency table for the questions ”If a mental health issue prompted you to request a medical leave from work, asking for that leave would
be:” and ”Do you think that discussing a mental health disorder with your employer would have negative consequences?”.

the main structure of the data, with the majority of survey

participants grouped into five main classes. Note that this is

not a statement that there are in fact five latent classes.

We focus on the four biggest classes (A, B, C and D)

which together cover 88% of the individuals (Figure 8B). We

find that two groups (B and D) mainly consist of individuals

that answered the question ”Have you been diagnosed with

a mental health condition by a medical professional?” with

”Yes” and two groups (A and C) with individuals that mainly

answered the question with ”No” (Figure 8C). It is of course

interesting that the algorithm creates two groups (A and C

vs. B and D) for the major phenotypic characteristic. To find

out what is the main difference between A and C, and B and

D, we look at the predictive features for each of the classes

(the question-answer pairs that maximize the probability for

class k: argmaxXj=r p(z = k|Xj = r)). We notice that for

group C and D answering the question ”Do you think that

discussing a mental health disorder with your employer would

have negative consequences?” with ”No” is a predictive feature

(p = 41% and p = 29%, respectively), whereas answering

with ”Yes” is predictive for group A and B (p = 35% and

p = 56%, respectively) (Figure 8D). This suggests, that there

are differences between the individuals who expect that being

open about their mental health disorder will have negative

consequences.

We looked for other features about the employer that differ

by the expectation of discussing mental health and found,

for example, that people are less likely to expect negative

consequences if the employer has mental health care under the

employer-provided coverage (Chi-squared test p = 0.0061).

We also found that people have more negative expectations

about asking for mental health-related leave, if their general

expectations about discussing mental health with their em-

ployer is negative (Wilcoxon rank-sum test p < 2.2× 10−16,

Figure 8E).

Interestingly post-traumatic stress disorder (PTSD) is also

a predictive feature for group B. This leads us to propose the

hypothesis that individuals who are affected by PTSD, might

have a more negative expectation about the consequences of

discussing it with their employer. We check the hypothesis

with a Fisher’s exact test and reject the null hypothesis

that individuals with PTSD have the same expectation as

individuals with other mental disorder (p = 0.0417). On the

other hand having a diagnosis for attention deficit hyperactivity

disorder (ADHD) is a predictive feature for group D, but we

did not find a significant relation of ADHD with having less

negative expectations (Fisher’s exact test p = 0.6341). This

is a good example how the unsupervised clustering can help

uncover interesting underlying structures, but on the other

hand one must be careful not to over-interpret the data and

check if trends can be confirmed with the whole dataset.
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Fig. 9. Defining features plot of the NCPES dataset, with the questions
that are most informative for distinguishing the inferred clusters. The area
of each square indicates the fraction of individuals in a group that answered
the question a specific way. The sum of the area of all squares in each column
is 1. In the original questionnaire the answers for the question 14, 15, 21, 49
and 54 differed slightly in their formulation, so we grouped them into common
categories. The vertical bars have no additional meaning and only serve to
enhance the visual clarity of the plot.

D. 2015 National Cancer Patient Experience Survey (NCPES)

Lastly, we wanted to analyze the 2015 NCPES [7] to

demonstrate the usefulness of our algorithm on a big dataset.

The NCPES is an annual survey that has been conducted since

2010 and is commissioned by the British National Health

Service (NHS) to monitor the state of care for cancer patients.

The data consists of the responses from 71,186 individuals and

has additional data about the gender, the tumor and the age of

the patient. The data available from the questionnaire consists

of 67 questions, of which all but three are categorical single

choice questions. Those three that are not, were ignored in

the subsequent analysis. The dataset also has a considerable

number of missing values, in total more than 16% of all entries

are not available. The NCPES is an interesting example of a

high-dimensional categorical dataset, but so far most of the

analysis has focused predominantly on univariate features of

the dataset. Researchers have looked on the distribution of

responses for individual questions (e.g. ”87% of respondents

said that, overall, they were always treated with dignity and

respect while they were in hospital.” [7]).

Ideally we would want to infer an adequate number of latent

classes on this dataset, but due to its inherent complexity and

size, this would lead to too many classes for any manual

downstream analysis (Figure 10). For brevity in this paper,

we decided for the sake of simplicity and interpretability

to analyze the dataset using the simple Dirichlet prior with

K = 5. We run our algorithm multiple times to check if the

clusterings are consistent and find that the average agreement

between ten iterations is ARI = 0.998.

The challenge with this dataset is that it contains such a

large number of questions, which makes it difficult to decide

which are the interesting variables that are important for

the clustering. To find a manageable number of questions,

we reduce the dimensionality of the dataset. We iteratively

remove variables and test how much this affects the predicted

clustering. We measure the loss of information using the

Fig. 10. Challenges of inferring the number of classes on the NCPES data.
A shows the number of realized clusters for the MixDir model with a Dirichlet
or a Dirichlet Process prior, depending on the maximum number of possible
clusters. B shows the adjusted Rand index between the relicates depending
on the maximum number of available clusters. The blue line shows a linear
and an inverse Gaussian model. D shows an alluival plot demonstrating the
effect of increasing α1 with a Dirichlet Process prior.

Jensen-Shannon divergence on the predicted and the original

class probability matrix at each step and remove the variable

that least affects the clustering. This way we can narrow down

the original set of 63 questions to five which are the most

informative for distinguishing the clusters (Figure 9).

We find interesting distinct groups: cluster A is the second

largest group and contains individuals that answered very

positively throughout all 5 questions, cluster B is still mostly

positive, but the answers are more nuanced, cluster C is the

largest cluster and is defined by somewhat positive responses

(e.g. ”Yes, to some extent” or ”Yes, some of the time”),

cluster D is more negative and is also defined by individuals

answering ”Don’t know”, lastly, cluster E is the smallest

cluster and the most negative with people answering the

questions more often negative than positive. To validate that

the overall satisfaction is a major driver of the clustering, we

look at question 59, which asks the individuals to rate their

overall experience from 1 to 10. We removed this question

during the data cleaning, because it is not categorical, and can

thus use it to demonstrate that we were nonetheless able to
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recover this information. We perform an Wilcoxon rank sum

test on the ratings comparing that ratings(A) > ratings(B) >
ratings(C) > ratings(D) > ratings(E), which is in all four

cases highly significant (p < 2.2× 10−16).

An important feature of our method is that it produces

probabilistic assignments of individuals to the latent classes.

As we just described in the case of the NCPES we find

that the latent classes have a linear relationship, so one can

easily imagine that some individuals might be in between

two classes, but are rarely considered a mix of more than

two classes. Accordingly we find that less than 4% of the

individuals have more than 10% probability for at least three

classes.

When we focus on question 49 which asks about the

involvement of the family and/or friends, we can see that

they were less involved in clusters C, D and E. To see if

indeed missing involvement of the family leads to less overall

satisfaction, we test if overall individuals which answered

”Yes” or ”Yes, to some extend” were more satisfied than

individuals that answered ”No” or ”No family or friends were

involved” (Wilcoxon rank sum test p < 2.2× 10−16). On the

other hand this needs to be qualified because individuals that

deliberately decided against involvement of their family are

overall more satisfied than individuals that just stated their

social network was not involved (Wilcoxon rank sum test

p < 2.2 × 10−16). This underlines the importance of social

networks during cancer treatment, but on the other hand which

role the ability to make deliberate choices can play.

To summarize, we are able to cluster the large NCPES

dataset and uncover interesting latent structure. We identify

the overall satisfaction as a major underlying feature of the

dataset and show how it can be related to the support patients

get from their family and friends. This demonstrates that our

algorithm can be a useful tool for handling large and high-

dimensional categorical datasets.

V. DISCUSSION

There is no universally best clustering technique without

context, but we find that our method has several desirable

features. It can deal with large datasets of more than 70,000

observations, it has a principled approach to handle missing

data thanks to the Bayesian framework and it can handle

datasets where the true number of latent classes is not known.

We developed two related versions of the algorithm, one for a

finite number of classes and the nonparametric version where

we assume that the number of latent classes keeps increasing

as long as gather more observations. One limitation is that

for the analysis of the performance of the different methods

using simulations, we only quantified it using data generated

from a model that has the same independence assumptions

as the model we developed here. Another limitation could be

that for the nonparametric extension we use a Dirichlet Process

prior, which has the known problem of overestimating the true

number of latent classes [25]. This issue should be kept in

mind, but in our experience this has not been a problem for

the datasets we looked at.

In this paper we have presented a variational inference algo-

rithm for Bayesian latent class models and their nonparametric

extension. We demonstrate on high-dimensional categorical

data that our clustering algorithm is able infer good results

on synthetic and real world datasets. We also show that its

performance is comparable to the best competitor (poLCA)

if the correct number of latent class is known a priori, and

actually outperforms the other methods if the number of

classes is not known, which is a common problem.
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APPENDIX A

VARIATIONAL INFERENCE DERIVATION

In this section we want to give a short introduction to

variational inference (VI) and the explicit derivation of the

updates for the variational parameters.

VI is an approximate method to do inference in Bayesian

models [3], [26]. It is an alternative to the well known

MCMC algorithms that randomly sample from the model until

the stationary distribution of the samples correspond to the

posterior of the model and the data. Instead VI converts the

inference problem into an optimization problem, which can be

solved much more efficiently.

In the Bayesian framework we are interested in learning

about the distribution of the parameters given the observed

data. Mathematically this can be written as

p(z|x) = p(z,x)

p(x)
, (14)

where z are all the parameters of the model and x is the data.

This is just a reformulation of the famous Bayes rule and

means that the conditional distribution equals the joint distri-

bution of data and parameters divided by the marginal p(x).
Calculating this marginal is the big challenge in Bayesian

inference because to calculate the probability of observing a

particular dataset x one would need to consider all possible

configurations of the parameters z. Or again in mathematical

notation

p(x) =

∫
p(z,x) dz. (15)

Only for very simple models it is possible to calculate this

integral analytically, for complex models it is necessary to

find approximations for this integral for example with MCMC

or VI.

In VI we choose a family F of distributions, which is easier

to handle, and try to find a setting where our approximate

distribution q(z) ∈ F is as close as possible to the posterior

p(z|x). The closeness is measured with the Kullback-Leibler

(KL) divergence

KL(q(z)‖p(z|x)) =
∫
q(z) log

q(z)

p(z|x) dz
= E[log q(z)]− E[log p(z|x)]

(16)

where all expectations E are taken with respect to q(z). The

KL divergence is not symmetric and favors q(z) to be smaller

and to underestimate the variance of p(z|x), but on the other

hand it is has nice mathematical properties that makes it useful

for approximating complex models.

As discussed earlier the term p(z|x) in eq. 16 is usually

not available, but we can re-arrange the equation so that it is

not needed:

KL(q(z)‖p(z|x)) = E[log q(z)]− E[log p(z,x)]

+ log p(x)

− KL(q(z‖p(z|x)) + log p(x) = E[log p(z,x)]− E[log q(z)]

ELBO[q] = E[log p(z,x)]− E[log q(z)]

ELBO[q] = E[log p(z,x)] +H[q(z)],
(17)

where ELBO is short for evidence lower bound and H is the

entropy of a function (H[p] = − ∫
p(x) log p(x) dx). Looking

at eq. 17 we can see that maximizing the ELBO is equivalent

to minimizing the KL divergence up to an additive constant.

So the goal of VI is to find q∗(z) such that

q∗(z) = argmin
q(z)∈F

KL(q(z)‖p(z|x)) = argmax
q(z)∈F

ELBO[q]. (18)

In theory all kind of distributions F could be applicable here,

but in practice the one that is most commonly chosen in VI is

the so called mean field variational family. It assumes that the

latent variables are all independent, so that q(z) factorizes to

q(z) =

m∏
j=1

qj(zj) (19)

and each density qj(zj) can be chosen independently to

maximize the ELBO. Our factorization of q(z) is provided in

eq. 6.
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Now we can start to derive the update equations. First we

will write down the expectation of the joint E[log p(z,x)] from

eq. 17

E [log p(z,x)] =E [log p(λ|α)]

+

I∑
i=1

E [log p(zi|λ)]

+
J∑

j=1

K∑
k=1

E[log p(Uj,k|β)]

+
I∑

i=1

J∑
j=1

K∑
k=1

E[log p(Xi,j |Uj,k, zi = k)]

(20)

The first line of equation eq. 20 is simply the expectation

of a log Dirichlet distribution, which we can look up in [18]

as

E [log p(λ|α)] = log Γ

(∑
k

αk

)

−
∑
k

log Γ(αk)

+
∑
k

(αk − 1)
(
ψ(ωk)− ψ

(∑
k

ωk

))

(21)

where ψ(ωk) is the digamma function.

The expectation in the second line of eq. 20 we can again

look up in [18] as

E[log p(zi|λ)] =
K∑

k=1

ζi,k Eq[log λk]

=

K∑
k=1

ζi,k

(
ψ(ωk)− ψ

(∑
k

ωk

))
.

(22)

The expectation in the third line of eq. 20 is again just a

log Dirichlet

E[log p(Uj,k|β)] = log Γ

(∑
r

βr

)

−
∑
r

log Γ(βr)

+
∑
r

(
(βr − 1)ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))
.

(23)

The expectation in the fourth line of eq. 20 is not readily

available, so we will have to derive it

E[log p(Xi,j |Uj,k, zi = k)] = E
[
�[zi = k] log p(Xi,j |Uj,k)

]
= E

[
�[zi = k]]E[log p(Xi,j |Uj,k)]

]

= ζi,k

( Rj∑
r=1

�[Xi,j = r]

×
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

)))
.

(24)

Now that we have all the necessary expectations to calculate

E[p(z,x)], we can derive the Entropies for H[q] (the later half

of eq. 17).

H [q(λ, z, U ;ω, ζ, φ)] =H [q(λ;ω)]

+
I∑

i=1

H [q(zi; ζi)]

+
J∑

j=1

K∑
k=1

H[q(Uj,k;φj,k)]

(25)

The first line of eq. 25 is just the entropy of a Dirichlet

distribution which we can look up as

H [q(λ;ω)] =− log Γ
(∑

k

ωk

)
+

∑
k

log Γ(ωk)

−
∑
k

(ωk − 1)
(
ψ(ωk)− ψ

(∑
k

ωk

))
.

(26)

The second line of eq. 25 is the entropy of a multinomial:

H [q(zi; ζi)] = −
∑
k

ζi,k log ζi,k (27)

Analogous to the entropy in eq. 26, we can write down the

entropy for the third line of eq. 25

H[q(Uj,k;φj,k)] =− log Γ
(∑

r

φr

)
+

∑
r

log Γ(φr)

−
∑
r

(φr − 1)
(
ψ(φr)− ψ

(∑
r

φr

))

(28)

Now we have all elements in place to actually optimize the

free variational parameters ω, ζ and φ to maximize the ELBO.

One approach would to apply a general purpose optimizer like

BFGS, but the number of parameters in our model can grow

very quickly, so that this approach becomes inefficient. Instead

we will use a coordinate ascent strategy (CAVI [3]), where we

iteratively optimize each single free parameter while the other

are hold constant until the ELBO has converged. To achieve

efficient updates, we will derive analytical updates for each

of the parameters, by taking the derivative of the ELBO and

setting it to zero.

First we will derive the update for latent group mixture

parameter ωk. This step is equivalent to the derivation of the

updates of γi in the LDA model described in the appendix
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A.3.2 of [18].

∂ ELBO

∂ωk
=

∂

∂ωk

(∑
k

(αk − 1)
(
ψ(ωk)− ψ

(∑
k

ωk

))

+
∑
k

∑
i

ζi,k

(
ψ(ωk)− ψ

(∑
k

ωk

))

− log Γ
(∑

k

ωk

)
+ log Γ(ωk)

−
∑
k

(ωk − 1)
(
ψ(ωk)− ψ

(∑
k

ωk

)))

=
∂

∂ωk

(
ψ(ωk)(αk +

∑
i

ζi,k − ωk)

− ψ
(∑

k

ωk

)∑
k

(αk +
∑
i

ζi,k − ωk)

− log Γ
(∑

k

ωk

)
+ log Γ(ωk)

)

= ψ′(ωk)(αk +
∑
i

ζi,k − ωk)

− ψ′
(∑

k

ωk

)∑
k

(αk +
∑
i

ζi,k − ωk)

(29)
If we assume that all αk are equal, because our prior is

symmetric, we can see that the whole term is zero when (α+∑
i ζi,k − ωk) = 0 and thus we can conclude that the ELBO

is maximized when ωk is set to

ωk = α+
∑
i

ζi,k. (30)

We will now derive the update for ζi,k in a similar fashion:

∂ ELBO

∂ζi,k
=

∂

ζi,k

(
ζi,k

(
ψ(ωk)− ψ

(∑
k

ωk

))

+ ζi,k

J∑
j=1

(
ψ(φj,k,Xi,j )− ψ

(∑
r

φj,k,r

))

− ζi,k log ζi,k
)

= ψ(ωk)− ψ
(∑

k

ωk

)

+
J∑

j=1

(
ψ(φj,k,Xi,j

)

− ψ
(∑

r

φj,k,r

))
− log(ζi,k)− 1

(31)
Setting this to zero and solving for ζi,k we find that

ζi,k ∝ exp

((
ψ(ωk)− ψ

(∑
k

ωk

))

+

J∑
j=1

(
ψ(φj,k,Xi,j

)− ψ
(∑

r

φj,k,r

)))
,

(32)

where the solution is only correct up to a proportional constant,

because of the constraint that
∑

k ζi,k = 1.

Finally we will derive the update for φj,k,r:

∂ ELBO

∂φj,k,r
=

∂

∂φj,k,r

(∑
r

(βr − 1)
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))

+
∑
r

I∑
i=1

ζi,k�[Xi,j = r]

×
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))

− log Γ
(∑

r

φj,k,r

)
+

∑
r

log Γ(φj,k,r)

−
∑
r

(φj,k,r − 1)
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

)))

=
∂

∂φj,k,r

(
ψ(φj,k,r)

× (βr +
I∑

i=1

ζi,k�[Xi,j = r]− φj,k,r)

− ψ
(∑

r

φj,k,r

)

×
∑
r

(βr +
I∑

i=1

ζi,k�[Xi,j = r]− φj,k,r)

− log Γ
(∑

r

φj,k,r

)
+

∑
r

log Γ(φj,k,r)

)

= ψ′(φj,k,r)(βr +
I∑

i=1

ζi,k�[Xi,j = r]− φj,k,r)

− ψ′
(∑

r

φj,k,r

)

×
∑
r

(βr +
I∑

i=1

ζi,k�[Xi,j = r]− φj,k,r)
(33)

When we set this to zero and solve for φj,k,r we

can again see that the whole term is zero when (βr +∑I
i=1 ζi,k�[Xi,j = r]− φj,k,r) = 0 and if we again assume

that all βr are equal, that thus

φj,k,r = β +
I∑

i=1

ζi,k�[Xi,j = r]. (34)

APPENDIX B

NONPARAMETRIC EXTENSION

In this section we want to derive the update equation of the

variational parameters for the nonparametric model.

The first term of the ELBO that obviously changes is the

expectation of the Dirichlet, which now is the expectation of

the Dirichlet Process

E[log p(v|α)] =
Kmax−1∑

k=1

E[log p(vk|α)]

=

Kmax−1∑
k=1

(
(α1 − 1)(ψ(κk,1)− ψ(κk,1 + κk,2))

+ (α2 − 1)(ψ(κk,2)− ψ(κk,1 + κk,2))
).

(35)
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The second line of eq. 20 we can look up in [19]

E[log p(zi|v)] =
Kmax∑
k=1

(
q(zi > k)E[log(1− vk)] + q(zi = k)E[log vk]

)

(36)
where

q(zi > k) =

Kmax∑
k′=k+1

ζi,k′

q(zi = k) = ζi,k

E[log(1− vk)] = ψ(κk,2)− ψ(κk,1 + κk,2)

E[log vk] = ψ(κk,1)− ψ(κk,1 + κk,2).

(37)

The expectations in line 3 and 4 of eq. 20 are unchanged and

still

E[log p(Uj,k|β)] = log Γ

(∑
r

βr

)
−

∑
r

log Γ(βr)

+
∑
r

(βr − 1)
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))

E[log p(Xi,j |Uj,k, zi = k) = ζi,k

Rj∑
r=1

�[Xi,j = r]

×
(
ψ(φj,k,r)− ψ

(∑
r

φj,k,r

))

(38)

We also need to update the entropy for the Dirichlet in eq.

25.

H[q(v;κ1,κ2)] = −
Kmax∑
k=1

(
log Γ(κk,1) + log Γ(κk,2)

− log Γ(κk,1 + κk,2)

+ (κk,1 − 1)ψ(κk,1)

+ (κk,2 − 1)ψ(κk,2)

− (κk,1 + κk,2 − 2)ψ(κk,1 + κk,2)
)

(39)

We now again have all the elements to derive the new update

equations. We will first derive the updates for κk,1

∂ ELBO

∂κk,1
=

∂

∂κk,1

(
(α1 − 1)(ψ(κk,1)− ψ(κk,1 + κk,2))

− (α2 − 1)ψ(κk,1 + κk,2)

+
I∑

i=1

(
(ψ(κk,2)− ψ(κk,1 + κk,2))

Kmax∑
k′=k+1

ζi,k′

+ (ψ(κk,1)− ψ(κk,1 + κk,2))ζi,k

)

−
(
log Γ(κk,1) + log Γ(κk,1 + κk,2)

+ (κk,1 − 1)ψ(κk,1)

+ (κk,1 + κk,2 − 2)ψ(κk,1 + κk,2)
))

= ψ(κk,1)(α1 − 1 +
∑
i

ζi,k − κk,1 + 1)

+ ψ(κk,1 + κk,2)

× ( − α1 + 1− α2 + 1

−
∑
i

Kmax∑
k′=k+1

ζi,k′

−
∑
i

ζi,k + κk,1 + κk,2 − 2)

(40)

This term is zero if κk,2 removes the additional terms in

the second parentheses and κk,1 is just equal to the remaining

terms. The update equations for κk,1 and κk,2 are thus

κk,2 = α2 +
∑
i

Kmax∑
k′=k+1

ζi,k′

κk,1 = α1 +
∑
i

ζi,k,

(41)

which matches the results of [19]. In this equation we see

that unlike the classical Dirichlet Process our model has two

hyper-parameters: α1 and α2. This model is also the called

the Beta two parameter process [27]. It is equivalent to the

Dirichlet Process if α1 = 1. A large value for α2 encourages

the opening of more classes, whereas a large value for α1

penalizes the opening of new classes.

Specifically for the Beta two parameter process the ratio of

κk,1 to κk,2 determines how much of the remaining probability

mass is assigned to class k. On average class k will cover
κk,1

κk,1+κk,2
of the remaining space. The priors α1 and α2 serve

as additional pseudo counts in that ratio. So if we believe a
priori that each class should cover 90% of the remaining space

there are in theory two ways to achieve this. We can either fix

α1 = 1 and make α2 smaller (i.e. α2 = 1/9) or fix α2 = 1
and make α1 larger (i.e. α1 = 9). But in the first case if

we actually have observed
∑

i

∑Kmax

k′=k+1 ζi,k′ > 1 this would

easily overpowers our prior believe, whereas in the second

case the regularization is much stronger.
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We will now similarly derive the update for ζi,k

∂ ELBO

∂ζi,k
=

∂

∂ζi,k

(
ζi,k(ψ(κk,1)− ψ(κk,1 + κk,2))

+ ζi,k

k−1∑
k′=1

(ψ(κk′,2)− ψ(κk′,1 + κk′,2))

+ ζi,k

J∑
j=1

(
ψ(φj,k,Xi,j

)− ψ
(∑

r

φj,k,r

))

− ζi,k log ζi,k
)

= ψ(κk,1)− ψ(κk,1 + κk,2)

+
k−1∑
k′=1

(ψ(κk′,2)− ψ(κk′,1 + κk′,2))

+

J∑
j=1

(
ψ(φj,k,Xi,j )− ψ

(∑
r

φj,k,r

))

− log(ζi,k)− 1
(42)

We can easily set this to zero and solve this for ζi,k again

up to an proportional constant

ζi,k ∝ exp

(
ψ(κk,1)− ψ(κk,1 + κk,2)

+

k−1∑
k′=1

(ψ(κk′,2)− ψ(κk′,1 + κk′,2))

+

J∑
j=1

(
ψ(φj,k,Xi,j )− ψ

(∑
r

φj,k,r

)))
(43)

The update equation for φj,k,r does not change, so we now

have all the elements to maximize the ELBO.
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